Evaluation of Carbon Dioxide Pressure through Radial Velocity Difference in Arterial Blood Modeled by Drift Flux Model

نویسنده

  • Aicha Rima Cheniti
چکیده

In this paper, we are interested to determine the carbon dioxide pressure in the arterial blood through radial velocity difference. The blood was modeled as a two phase mixture (an aqueous carbon dioxide solution with carbon dioxide gas) by Drift flux model and the Young-Laplace equation. The distributions of mixture velocities determined from the considered model permitted the calculation of the radial velocity distributions with different values of mean mixture pressure and the calculation of the mean carbon dioxide pressure knowing the mean mixture pressure. The radial velocity distributions are used to deduce a calculation method of the mean mixture pressure through the radial velocity difference between two positions which is measured by ultrasound. The mean carbon dioxide pressure is then deduced from the mean mixture pressure. Keywords—Mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity difference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Abstract—In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement metho...

متن کامل

Impact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion

The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...

متن کامل

Fabrication and Characterization of Polyetherimide Hollow Fiber Membrane Contactor for Carbon Dioxide Stripping from Monoethanolamine Solution

In this research, process asymmetric polyetherimide hollow fiber membranes using ethanol (0, 2 and 4 wt%) as non-solvent additive in the polymer dope via phase inversion method were fabricated. Aqueous solution of 1-methyl-2-pyrrolidine (NMP) (90%) was applied as a bore fluid to avoid inner skin layer formation and water was used as the external coagulant. The morphology of fabricated membranes...

متن کامل

Investigating the Relationship Between End Tidal Carbon Dioxide and Arterial Carbon Dioxide Pressure in Patients With Respiratory Distress Referred to the Emergency Room of Hazrat Rasool Akram Hospital

Background: Measuring End-Tidal Carbon Dioxide (ETCO-2) can be a non-invasive, fast, and reliable method to predict partial pressure of carbon dioxide (PaCO2) in patients with respiratory distress. This method, which can be a suitable substitute to measure PaCO2, is being used in many emergency rooms and operating rooms in developed countries, but its exact relationship with PaCO2 has not been ...

متن کامل

End-tidal Carbon Dioxide Measurements in Unintentional Non-Fire-Related Carbon Monoxide Poisoning

Background: Poisoning with carbon monoxide occurs occasionally worldwide, and the gold diagnostic standard is to measure carboxyhemoglobin level in the blood. This study investigated the correlation between carboxyhemoglobin and the end-tidal carbon dioxide levels in 50 patients with carbon monoxide poisoning. Methods: We recruited 50 volunteer patients who had been admitted to the Emergency S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016