11C-Labeling of Aryl Ketones as Candidate Histamine Subtype-3 Receptor PET Radioligands through Pd(0)-Mediated 11C-Carbonylative Coupling

نویسندگان

  • Fabrice G. Siméon
  • William J. Culligan
  • Shuiyu Lu
  • Victor W. Pike
چکیده

Pd(0)-mediated coupling between iodoarenes, [11C]carbon monoxide and aryltributylstannanes has been used to prepare simple model [11C]aryl ketones. Here, we aimed to label four 2-aminoethylbenzofuran chemotype based molecules ([11C]1-4) in the carbonyl position, as prospective positron emission tomography (PET) radioligands for the histamine subtype 3 receptor (H3R) by adapting this methodology with use of aryltrimethylstannanes. Radiosynthesis was successfully performed on a platform equipped with a mini-autoclave and a liquid handling robotic arm, within a lead-shielded hot-cell. Candidate radioligands were readily formulated in saline containing ethanol (10%, v/v) and ascorbic acid (0.5 mg/10 mL). Yields for preclinical use were in the range of 5-9%, decay-corrected from cyclotron-produced [11C]CO₂ and molar activities were >115 GBq/µmol at end of synthesis. Radiochemical purities exceeded >97%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, in vitro and in vivo evaluation, and radiolabeling of aryl anandamide analogues as candidate radioligands for in vivo imaging of fatty acid amide hydrolase in the brain.

Fatty acid amide hydrolyase (FAAH) is one of the main enzymes responsible for terminating the signaling of endocannabinoids in the brain. Imaging FAAH in vivo using PET or SPECT is important to deeper understanding of its role in neuropsychiatric disorders. However, at present, no radioligand is available for mapping the enzyme in vivo. Here, we synthesized 18 aryl analogues of anandamide, FAAH...

متن کامل

The metabotropic glutamate receptor 5 radioligand [11C]AZD9272 identifies unique binding sites in primate brain

The metabotropic glutamate receptor 5 (mGluR5) is a target for drug development and for imaging studies of the glutamate system in neurological and psychiatric disorders. [11C]AZD9272 is a selective mGluR5 PET radioligand that is structurally different from hitherto applied mGluR5 radioligands. In the present investigation we compared the binding patterns of radiolabeled AZD9272 and other mGluR...

متن کامل

Dopamine D(2/3) receptor occupancy of apomorphine in the nonhuman primate brain--a comparative PET study with [11C]raclopride and [11C]MNPA.

Binding studies in vitro have demonstrated that the dopamine D2 receptor may exist in two affinity states for agonists. The high affinity state is thought to represent the functional state of the receptor and proportions might alter during disease. In vitro studies further indicate that agonists induce measurable D(2) receptor occupancy at clinically relevant concentrations but only when measur...

متن کامل

Radiosynthesis of 11C-phenytoin Using a DEGDEE Solvent for Clinical PET Studies

Objective(s): Phenytoin is an antiepileptic drug that is used worldwide. The whole-body pharmacokinetics of this drug have been extensively studied using 11C-phenytoin in small animals. However, because of the limited production amounts that are presently available, clinical 11C-phenytoin PET studies to examine the pharmacokinetics of phenytoin in humans have not yet been performed. We aimed to...

متن کامل

11C-JHU75528: a radiotracer for PET imaging of CB1 cannabinoid receptors.

UNLABELLED The development of the radioligands for PET imaging of the cerebral cannabinoid receptor (CB1) is of great importance for studying its role in neuropsychiatric disorders, obesity, and drug dependence. None of the currently available radioligands for CB1 are suitable for quantitative PET, primarily because of their insufficient binding potential (BP) in brain or low penetration throug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2017