Targeted learning by imposing asymmetric sparsity
نویسندگان
چکیده
in Finnish) ii
منابع مشابه
Convex Optimization with Mixed Sparsity-inducing Norm
Sparsity-inducing norm has been a powerful tool for learning robust models with limited data in high dimensional space. By imposing such norms as constraints or regularizers in an optimization setting, one could bias the model towards learning sparse solutions, which in many case have been proven to be more statistically efficient [Don06]. Typical sparsityinducing norms include `1 norm [Tib96] ...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملPosterior Regularization for Structured Latent Varaible Models
We present posterior regularization, a probabilistic framework for structured, weakly supervised learning. Our framework efficiently incorporates indirect supervision via constraints on posterior distributions of probabilistic models with latent variables. Posterior regularization separates model complexity from the complexity of structural constraints it is desired to satisfy. By directly impo...
متن کاملA Sparse Bayesian Estimation Framework for Conditioning Prior Geologic Models to Nonlinear Flow Measurements
We present a Bayesian framework for reconstruction of subsurface hydraulic properties from nonlinear dynamic flow data by imposing sparsity on the distribution of the solution coefficients in a compression transform domain. Sparse representation of the subsurface flow properties in a compression transform basis lends itself to a natural regularization approach, i.e. sparsity regularization, whi...
متن کاملNeurogenesis-Inspired Dictionary Learning: Online Model Adaption in a Changing World
In this paper, we focus on online representation learning in non-stationary environments which may require continuous adaptation of model’s architecture. We propose a novel online dictionary-learning (sparse-coding) framework which incorporates the addition and deletion of hidden units (dictionary elements), and is inspired by the adult neurogenesis phenomenon in the dentate gyrus of the hippoc...
متن کامل