Electrical current through individual pairs of phosphorus donor atoms and silicon dangling bonds
نویسندگان
چکیده
Nuclear spins of phosphorus [P] donor atoms in crystalline silicon are among the most coherent qubits found in nature. For their utilization in scalable quantum computers, distinct donor electron wavefunctions must be controlled and probed through electrical coupling by application of either highly localized electric fields or spin-selective currents. Due to the strong modulation of the P-donor wavefunction by the silicon lattice, such electrical coupling requires atomic spatial accuracy. Here, the spatially controlled application of electrical current through individual pairs of phosphorus donor electron states in crystalline silicon and silicon dangling bond states at the crystalline silicon (100) surface is demonstrated using a high-resolution scanning probe microscope operated under ultra-high vacuum and at a temperature of 4.3 K. The observed pairs of electron states display qualitatively reproducible current-voltage characteristics with a monotonous increase and intermediate current plateaus.
منابع مشابه
Mechanisms of metastability in hydrogenated amorphous silicon
We survey theoretical approaches to understanding the diverse metastable behavior in hydrogenated amorphous silicon. We discuss a recently developed network-rebonding model involving bonding rearrangements of silicon and hydrogen atoms. Using tight-binding molecular dynamics we find non-radiative recombination can break weak silicon bonds with low activation energies, producing dangling bond–fl...
متن کاملFirst principles study of lithium insertion in bulk silicon.
Si is an important anode material for the next generation of Li ion batteries. Here the energetics and dynamics of Li atoms in bulk Si have been studied at different Li concentrations on the basis of first principles calculations. It is found that Li prefers to occupy an interstitial site as a shallow donor rather than a substitutional site. The most stable position is the tetrahedral (T(d)) si...
متن کاملMetastability of amorphous silicon from silicon network rebonding.
We propose a network rebonding model for light-induced metastability in amorphous silicon, involving bonding rearrangements of silicon and hydrogen atoms. Nonradiative recombination breaks weak silicon bonds and generates dangling bond-floating bond pairs, with very low activation energies. The transient floating bonds annihilate, generating local hydrogen motion. Charged defects are also found...
متن کاملTritiated amorphous silicon betavoltaic devices - Circuits, Devices and Systems, IEE Proceedings [see also IEE Proceedings G- Circuits, Devices and
The introduction of tritium into hydrogenated amorphous silicon has given rise to a novel material with interesting physical properties and potential applications. Tritium undergoes radioactive decay, transforming into He and emitting an electron with average energy 5.7keV, at a rate equivalent to a half-life of 12.3 years. The decay of tritium results in the creation of electron– hole pairs an...
متن کاملMagic numbers of silicon clusters.
A structural model for intermediate sized silicon clusters is proposed that is able to generate unique structures without any dangling bonds. This structural model consists of bulk-like core of five atoms surrounded by fullerene-like surface. Reconstruction of the ideal fullerene geometry results in the formation of crown atoms surrounded by π-bonded dimer pairs. This model yields unique struct...
متن کامل