Macroscopic Models of Clique Tree Growth for Bayesian Networks
نویسنده
چکیده
In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to characterizing clique tree growth as a function of increasing Bayesian network connectedness, speci cally: (i) the expected number of moral edges in their moral graphs or (ii) the ratio of the number of non-root nodes to the number of root nodes. In experiments, we systematically increase the connectivity of bipartite Bayesian networks, and nd that clique tree size growth is well-approximated by Gompertz growth curves. This research improves the understanding of the scaling behavior of clique tree clustering, provides a foundation for benchmarking and developing improved BN inference algorithms, and presents an aid for analytical trade-off studies of tree clustering using growth curves.
منابع مشابه
Understanding the scalability of Bayesian network inference using clique tree growth curves
Bayesian networks (BNs) are used to represent and efficiently compute with multi-variate probability distributions in a wide range of disciplines. One of the main approaches to perform computation in BNs is clique tree clustering and propagation. In this approach, BN computation consists of propagation in a clique tree compiled from a Bayesian network. There is a lack of understanding of how cl...
متن کاملDesigning Resource-Bounded Reasoners using Bayesian Networks: System Health Monitoring and Diagnosis
In this work we are concerned with the conceptual design of large-scale diagnostic and health management systems that use Bayesian networks. While they are potentially powerful, improperly designed Bayesian networks can result in too high memory requirements or too long inference times, to they point where they may not be acceptable for real-time diagnosis and health management in resource-boun...
متن کاملRevealing the ISO/IEC 9126-1 Clique Tree for COTS Software Evaluation
Previous research has shown that acyclic dependency models, if they exist, can be extracted from software quality standards and that these models can be used to assess software safety and product quality. In the case of commercial off-the-shelf (COTS) software, the extracted dependency model can be used in a probabilistic Bayesian network context for COTS software evaluation. Furthermore, while...
متن کاملA combination of exact algorithms for inference on Bayesian belief networks
Cutset conditioning and clique-tree propagation are two popular methods for exact probabilistic inference in Bayesian belief networks. Cutset conditioning is based on decomposition of a subset of network nodes, whereas clique-tree propagation depends on aggregation of nodes. We characterize network structures in which the performances of these methods differ. We describe a means to combine cuts...
متن کاملA General Algorithm for Approximate Inference and Its Application to Hybrid Bayes Nets
The clique tree algorithm is the standard method for doing inference in Bayesian networks. It works by manipulating clique potentials — distributions over the variables in a clique. While this approach works well for many networks, it is limited by the need to maintain an exact representation of the clique potentials. This paper presents a new unified approach that combines approximate inferenc...
متن کامل