Consistency of Semiparametric Maximum Likelihood Estimators for Two-Phase Sampling
نویسندگان
چکیده
Semiparametric maximum likelihood estimators have recently been proposed for a class of two-phase, outcome-dependent sampling models. All of them were "restricted" maximum likelihood estimators, in the sense that the maximization is carried out only over distributions concentrated on the observed values of the covariate vectors. In this paper, the authors give conditions for consistency of these restricted maximum likelihood estimators. They also consider the corresponding unrestricted maximization problems, in which the "absolute" maximum likelihood estimators may then have support on additional points in the covariate space. Their main consistency result also covers these unrestricted maximum likelihood estimators, when they exist for all sample sizes. Convergence des estimateurs du maximum de vraisemblance semiparametrique dans le cadre d'echantillonnage a deux phases Risumi :Des estimateurs du maximum de vraisemblance serniparametrique ont dcernment kt15 proposCs dans le cadre de modhles pour plans d'6chantillonnage doubles A probabilitI5s de selection dependant de covariables. 11 s'agissait dans tous les cas d'estimateurs h vraisemblance maximale restreinte, en ce sens que la maximisation n'6tait effectuee que sur les lois ayant pour support l'ensemble des valeurs observkes des vecteurs de covariables. Dans cet article, les auteurs donnent des conditions assurant la convergence de ces estimateurs A vraisemblance maximale restreinte. Ils considerenten outre les problhmes de maximisation non-restreinte, dans lesquels les estimateurs h vraisemblance maximale "absolus" peuvent dependre de points additionnels de l'espace des covariables. Leur principal &sultat de convergence s'applique A ces estimateurs A vraisemblance maximale non-restreinte, lorsque ceux-ci existent pour toute taille d'kchantillon.
منابع مشابه
Consistency of Semiparametric Maximum Likelihood Estimators for Two-Phase, Outcome Dependent Sampling
Semiparametric maximum likelihood estimators have recently been proposed for a class of two-phase, outcome dependent sampling models; e.g. Breslow and Holubkov (1997), Scott and Wild (1998), and Lawless, Wild, and Kalb eisch (1999). The estimators studied by these authors are predicated on the estimates of the underlying covariate distribution being concentrated on the observed covariate values...
متن کاملLarge Sample Theory for Semiparametric Regression Models with Two-phase, Outcome Dependent Sampling By
Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch and Wild (...
متن کاملLarge Sample Theory for Semiparametric Regression Models with Two-Phase, Outcome Dependent Sampling
Outcome-dependent, two-phase sampling designs can dramatically reduce the costs of observational studies by judicious selection of the most informative subjects for purposes of detailed covariate measurement. Here we derive asymptotic information bounds and the form of the efficient score and influence functions for the semiparametric regression models studied by Lawless, Kalbfleisch, and Wild ...
متن کاملRobust semiparametric M-estimation and the weighted bootstrap
M-estimation is a widely used technique for statistical inference. In this paper, we study properties of ordinary and weighted M-estimators for semiparametric models, especially when there exist parameters that cannot be estimated at the √ n convergence rate. Results on consistency, rates of convergence for all parameters, and √ n consistency and asymptotic normality for the Euclidean parameter...
متن کاملAnalysis of a semiparametric mixture model for competing risks
Semiparametric mixture regression models have recently been proposed to model competing risks data in survival analysis. In particular, Ng and McLachlan (Stat Med 22:1097–1111, 2003) and Escarela and Bowater (Commun Stat Theory Methods 37:277–293, 2008) have investigated the computational issues associated with the nonparametric maximum likelihood estimation method in a multinomial logistic/pro...
متن کامل