The meshless finite element method
نویسندگان
چکیده
A meshless method is presented which has the advantages of the good meshless methods concerning the ease of introduction of node connectivity in a bounded time of order n, and the condition that the shape functions depend only on the node positions. Furthermore, the method proposed also shares several of the advantages of the Finite Element Method such as: (a) the simplicity of the shape functions in a large part of the domain; (b) C continuity between elements, which allows the treatment of material discontinuities, and (c) ease introduction of the boundary conditions.
منابع مشابه
On the natural stabilization of convection diffusion problems using LPIM meshless method
By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...
متن کاملAn Adaptive Basis Function for Meshless Simulation of Quantum Wave Packets at Optical Frequencies
In this work, an adaptive and efficient basis function is presented by which the Schrodinger equation can be solved using meshless method in an accurate and fast approach. The base of this achievement is the quantum wave packet. The proposed basis function reduces time consumption of the meshless method, approximately to half. Also, it inherits the fundamental properties of wave packets. Theref...
متن کاملImplementation of Meshless FEM for Engineering Applications
Meshless Finite Element Methods, namely elementfree Galerkin and point-interpolation method were implemented and tested concerning their applicability to typical engineering problems like electrical fields and structural mechanics. A class-structure was developed which allows a consistent implementation of these methods together with classical FEM in a common framework. Strengths and weaknesses...
متن کاملMeshless Local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches
(2000) Meshless local Petrov–Galerkin (MLPG) method in combination with finite element and boundary element approaches. Abstract The Meshless Local Petrov-Galerkin (MLPG) method is an effective truly meshless method for solving partial differential equations using Moving Least Squares (MLS) interpolants. It is, however, computationally expensive for some problems. A coupled MLPG/Finite Element ...
متن کاملIntroduction to the numerical homogenization by means of the Meshless Finite Difference Method with the Higher Order Approximation
Paper focuses on application of the Meshless Finite Difference Method (MFDM) solution approach and its selected extensions to the numerical homogenization of the heterogeneous material. The most commonly used method of computer modeling for the multiscale problem (at both the macro and micro (RVE) levels) is the Finite Element Method (FEM). However, this fact does not mean that one should not s...
متن کاملMeshless Methods and Partition of Unity Finite Elements
In this paper, meshless methods and partition of unity based finite element methods are reviewed. In meshless methods, the approximation is built without the explicit connectivity information between the nodes; moving-least squares approximants and natural neighbor-based interpolants are discussed. The enrichment of the finite element approximation through the partition of unity framework is de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002