Numerical simulation of a laboratory-scale turbulent V-flame.
نویسندگان
چکیده
We present a three-dimensional, time-dependent simulation of a laboratory-scale rod-stabilized premixed turbulent V-flame. The experimental parameters correspond to a turbulent Reynolds number, Re(t) = 40, and to a Damköhler number, D(a) = 6. The simulations are performed using an adaptive time-dependent low-Mach-number model with detailed chemical kinetics and a mixture model for differential species diffusion. The algorithm is based on a second-order projection formulation and does not require an explicit subgrid model for turbulence or turbulence/chemistry interaction. Adaptive mesh refinement is used to dynamically resolve the flame and turbulent structures. Here, we briefly discuss the numerical procedure and present detailed comparisons with experimental measurements showing that the computation is able to accurately capture the basic flame morphology and associated mean velocity field. Finally, we discuss key issues that arise in performing these types of simulations and the implications of these issues for using computation to form a bridge between turbulent flame experiments and basic combustion chemistry.
منابع مشابه
Numerical Simulation of a Premixed Turbulent V-Flame
Turbulent premixed combustion is a major active research topic in combustion science. A number of computational studies have focused on idealized configurations to aid in interpreting flame dynamics observed in the laboratory, including one-dimensional strained flames, two-dimensional vortex/flame interactions and limited three-dimensional direct numerical simulations. In this paper, we present...
متن کاملResolution Requirements in Stochastic Field Simulation of Turbulent Premixed Flames
The spatial resolution requirements of the Stochastic Fields probability density function approach are investigated in the context of turbulent premixed combustion simulation. The Stochastic Fields approach is an attractive way to implement transported Probability Density Function modelling into Large Eddy Simulations of turbulent combustion. In premixed combustion LES, the numerical grid shoul...
متن کاملA Thickened Stochastic Fields Approach for Turbulent Combustion Simulation
The Stochastic Fields approach is an effective way to implement transported Probability Density Function modelling into Large Eddy Simulation of turbulent combustion. In premixed turbulent combustion however, thin flame-like structures arise in the solution of the Stochastic Fields equations that require grid spacing much finer than the filter scale used for the Large Eddys Simulation. The conv...
متن کاملNumerical simulation of Lewis number effects on lean premixed turbulent flames
A dominant factor in determining the burning rate of a premixed turbulent flame is the degree to which the flame front is wrinkled by turbulence. Higher turbulent intensities lead to greater wrinkling of the flame front and an increase in the turbulent burning rate. This picture of turbulent flame dynamics must be modified, however, to accommodate the affects of variations in the local propagat...
متن کاملPlanar Laser-Induced Fluorescence in a Turbulent Premixed Flame to analyze Large Eddy Simulation Models
Large eddy simulations (LES), where the large-scale motions are explicitly computed, is a promising tool for numerical simulations of reactive flows which generally exhibit large coherent structures. Nevertheless, subgrid-scale models have to be developed to describe the effects of the smaller flow motions not resolved in the simulation. An experimental method is presented for validation and de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 29 شماره
صفحات -
تاریخ انتشار 2005