Major taste loss in carnivorous mammals.

نویسندگان

  • Peihua Jiang
  • Jesusa Josue
  • Xia Li
  • Dieter Glaser
  • Weihua Li
  • Joseph G Brand
  • Robert F Margolskee
  • Danielle R Reed
  • Gary K Beauchamp
چکیده

Mammalian sweet taste is primarily mediated by the type 1 taste receptor Tas1r2/Tas1r3, whereas Tas1r1/Tas1r3 act as the principal umami taste receptor. Bitter taste is mediated by a different group of G protein-coupled receptors, the Tas2rs, numbering 3 to ∼66, depending on the species. We showed previously that the behavioral indifference of cats toward sweet-tasting compounds can be explained by the pseudogenization of the Tas1r2 gene, which encodes the Tas1r2 receptor. To examine the generality of this finding, we sequenced the entire coding region of Tas1r2 from 12 species in the order Carnivora. Seven of these nonfeline species, all of which are exclusive meat eaters, also have independently pseudogenized Tas1r2 caused by ORF-disrupting mutations. Fittingly, the purifying selection pressure is markedly relaxed in these species with a pseudogenized Tas1r2. In behavioral tests, the Asian otter (defective Tas1r2) showed no preference for sweet compounds, but the spectacled bear (intact Tas1r2) did. In addition to the inactivation of Tas1r2, we found that sea lion Tas1r1 and Tas1r3 are also pseudogenized, consistent with their unique feeding behavior, which entails swallowing food whole without chewing. The extensive loss of Tas1r receptor function is not restricted to the sea lion: the bottlenose dolphin, which evolved independently from the sea lion but displays similar feeding behavior, also has all three Tas1rs inactivated, and may also lack functional bitter receptors. These data provide strong support for the view that loss of taste receptor function in mammals is widespread and directly related to feeding specializations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple loss-of-function variants of taste receptors in modern humans

Despite recent advances in the knowledge of interindividual taste differences, the underlying genetic backgrounds have remained to be fully elucidated. Much of the taste variation among different mammalian species can be explained by pseudogenization of taste receptors. Here I investigated whether the most recent disruptions of taste receptor genes segregate with their intact forms in modern hu...

متن کامل

Highlight: A Matter of Taste—Whales Have Abandoned Their Ability to Taste Food

Living in a world of prepared salads, soups, and sandwiches, our survival may not seem to hinge upon careful tasting what we eat. But for most of our species’ history, it was a life or death matter, and—for most other animals—it still is. Their sense of taste keeps them alive. "The most significant decision you make in your life everyday is, when you put something into your mouth, whether to sw...

متن کامل

Shh and Ptc are associated with taste bud maintenance in the adult mouse

In mammals, taste receptor cells are organized into taste buds on tongue. Taste buds are trophically maintained by taste neurons and under continuous renewal, even in adults. We found that the receptor for Sonic hedgehog (Shh), Patched1 (Ptc), was expressed around taste buds where cells were proliferating, and that Shh was expressed within basal cells of taste buds. Denervation caused the loss ...

متن کامل

Relaxation of selective constraint and loss of function in the evolution of human bitter taste receptor genes.

Bitter taste perception prevents mammals from ingesting poisonous substances because many toxins taste bitter and cause aversion. We hypothesize that human bitter taste receptor (TAS2R) genes might be relaxed from selective constraints because of the change in diet, use of fire and reliance on other means of toxin avoidance that emerged in human evolution. Here, we examine the intra-specific va...

متن کامل

Pseudogenization of a Sweet-Receptor Gene Accounts for Cats' Indifference toward Sugar

Although domestic cats (Felis silvestris catus) possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 13  شماره 

صفحات  -

تاریخ انتشار 2012