Thermoelectric performance of PbSe quantum dot films.
نویسندگان
چکیده
The thermoelectric (TE) performance of films of colloidal lead selenide (PbSe) quantum dots (QDs) with metal-chalcogenide complex ligands is seen to change with QD size and temperature. Films of smaller QDs have higher Seebeck coefficient magnitudes, indicating stronger quantum confinement, and lower electrical and thermal conductivities. The thermoelectric figure of merit ZT is ∼0.5 at room temperature and increases with temperature to 1.0-1.37 at ∼400 K, where it is larger for smaller QD films. This is better than previous results for solution-prepared QD TE materials at these elevated temperatures.
منابع مشابه
The Effect of pH on the Optical Band Gap of PbSe Thin Film with Usability in the Quantum Dot Solar Cell and Photocatalytic Activity
This study was an attempt to provide a simple solution processed synthesis route for Lead Selenide (PbSe) nanostructure thin films using the chemical bath deposition (CBD) method which is commercially available in inexpensive precursors. In the CBD method, the preparation parameters play a considerable role and determine the nature of the final product formed. Known as two main factors, the eff...
متن کاملActivating Carrier Multiplication in PbSe Quantum Dot Solids by Infilling with Atomic Layer Deposition.
Carrier multiplication-the generation of multiple electron-hole pairs by a single photon-is currently of great interest for the development of highly efficient photovoltaics. We study the effects of infilling PbSe quantum-dot solids with metal oxides by atomic layer deposition on carrier multiplication. Using time-resolved microwave conductivity measurements, we find, for the first time, that c...
متن کاملSeminar Talk
Thermoelectrics (TE) is a green renewable energy technology which plays an import role in power generation due to its potential in generating electricity out of waste heat. The challenge for the development of thermoelectric is its low conversion efficiency. The efficiency of thermoelectric materials is related to the figure of merit, which is expressed as ZT = S2σT/, where S is the Seebeck coe...
متن کاملPbSe nanocrystal solids for n- and p-channel thin film field-effect transistors.
Initially poorly conducting PbSe nanocrystal solids (quantum dot arrays or superlattices) can be chemically "activated" to fabricate n- and p-channel field effect transistors with electron and hole mobilities of 0.9 and 0.2 square centimeters per volt-second, respectively; with current modulations of about 10(3) to 10(4); and with current density approaching 3 x 10(4) amperes per square centime...
متن کاملPbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V(-1) s(-1).
PbSe quantum dot (QD) field effect transistors (FETs) with air-stable electron mobilities above 7 cm(2) V(-1) s(-1) are made by infilling sulfide-capped QD films with amorphous alumina using low-temperature atomic layer deposition (ALD). This high mobility is achieved by combining strong electronic coupling (from the ultrasmall sulfide ligands) with passivation of surface states by the ALD coat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 5 16 شماره
صفحات -
تاریخ انتشار 2013