Hedgehog is required for murine yolk sac angiogenesis.
نویسندگان
چکیده
Blood islands, the precursors of yolk sac blood vessels, contain primitive erythrocytes surrounded by a layer of endothelial cells. These structures differentiate from extra-embryonic mesodermal cells that underlie the visceral endoderm. Our previous studies have shown that Indian hedgehog (Ihh) is expressed in the visceral endoderm both in the visceral yolk sac in vivo and in embryonic stem (ES) cell-derived embryoid bodies. Differentiating embryoid bodies form blood islands, providing an in vitro model for studying vasculogenesis and hematopoiesis. A role for Ihh in yolk sac function is suggested by the observation that roughly 50% of Ihh(-/-) mice die at mid-gestation, potentially owing to vascular defects in the yolk sac. To address the nature of the possible vascular defects, we have examined the ability of ES cells deficient for Ihh or smoothened (Smo), which encodes a receptor component essential for all hedgehog signaling, to form blood islands in vitro. Embryoid bodies derived from these cell lines are unable to form blood islands, and express reduced levels of both PECAM1, an endothelial cell marker, and alpha-SMA, a vascular smooth muscle marker. RT-PCR analysis in the Ihh(-/-) lines shows a substantial decrease in the expression of Flk1 and Tal1, markers for the hemangioblast, the precursor of both blood and endothelial cells, as well as Flt1, an angiogenesis marker. To extend these observations, we have examined the phenotypes of embryo yolk sacs deficient for Ihh or SMO: Whereas Ihh(-/-) yolk sacs can form blood vessels, the vessels are fewer in number and smaller, perhaps owing to their inability to undergo vascular remodeling. Smo(-/-) yolk sacs arrest at an earlier stage: the endothelial tubes are packed with hematopoietic cells, and fail to undergo even the limited vascular remodeling observed in the Ihh(-/-) yolk sacs. Our study supports a role for hedgehog signaling in yolk sac angiogenesis.
منابع مشابه
Hedgehog induction of murine vasculogenesis is mediated by Foxf1 and Bmp4.
The first vasculature of the developing vertebrate embryo forms by assembly of endothelial cells into simple tubes from clusters of mesodermal angioblasts. Maturation of this vasculature involves remodeling, pruning and investment with mural cells. Hedgehog proteins are part of the instructive endodermal signal that triggers the assembly of the first primitive vessels in the mesoderm. We used a...
متن کاملVisceral Endoderm Expression of Yin-Yang1 (YY1) Is Required for VEGFA Maintenance and Yolk Sac Development
Mouse embryos lacking the polycomb group gene member Yin-Yang1 (YY1) die during the peri-implantation stage. To assess the post-gastrulation role of YY1, a conditional knock-out (cKO) strategy was used to delete YY1 from the visceral endoderm of the yolk sac and the definitive endoderm of the embryo. cKO embryos display profound yolk sac defects at 9.5 days post coitum (dpc), including disrupte...
متن کاملWinged-Helix, Hedgehog and Bmp genes are differentially expressed in distinct cell layers of the murine yolk sac
The visceral yolk sac plays a critical role in normal embryogenesis, yet little is known about the specific molecules that regulate its development. We show here that four winged-helix genes (HNF-3alpha, HNF-3beta, HNF-3gamma and HFH-4) are restricted to visceral endoderm. In the absence of HNF-3beta, visceral endoderm forms but the morphogenetic movements by which the embryo becomes enclosed w...
متن کاملMolecular pathways regulating pro-migratory effects of Hedgehog signaling.
The Hedgehog proteins play a crucial role in metazoan embryo development. Constitutive activation of the pathway is associated with multiple types of cancer. Recent experimental data suggest involvement of Hedgehog signaling in vascular remodeling, germ cell migration, and axon guidance. The molecular mechanisms underlying these effects remain elusive. Here we show that yolk sac-derived endothe...
متن کاملThe murine allantois: a model system for the study of blood vessel formation.
The allantois is the embryonic precursor of the umbilical cord in mammals and is one of several embryonic regions, including the yolk sac and dorsal aorta, that undergoes vasculogenesis, the de novo formation of blood vessels. Despite its importance in establishing the chorioallantoic placenta and umbilical circulation, the allantois frequently is overlooked in embryologic studies. Nonetheless,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 129 2 شماره
صفحات -
تاریخ انتشار 2002