Basilar membrane vibration in the gerbil hemicochlea.
نویسندگان
چکیده
Excised gerbil cochleae were cut along the mid-modiolar plane (hemicochlea). Along one-half turn of this preparation, fluorescent microbeads were placed on the basilar membrane (BM). The BM was vibrated with click stimuli (50 micros) produced mechanically by a piezo pusher. The stimulus delivery probe could be positioned either more apical or more basal from the beads. Vibration patterns were measured with a wide bandwidth photomultiplier from the movements of the beads. When the probe was positioned more basal, the responses to click stimuli were brief, damped sinusoids. According to the fast Fourier transforms (FFTs) of the averaged time wave forms, the best frequency between successive beads decreased toward the apex (0.8 octave/mm). Sharpness of tuning of the normalized FFT spectra (NQ10dB) on average was 1.5. Response amplitude at a fixed input level, measured at different beads away from the stimulation site, dropped exponentially (58 dB/mm). In addition, for each individual bead, amplitude dropped linearly with decreasing stimulus intensity. In experiments where the stimulating probe was placed more apical, two major properties were observed: first, beads revealed only the spectral components present in the motion of the probe. Second, magnitude reduction of the displacement of the cochlear partition was greater, on average 155 dB/mm, indicating a lack of significant propagation in the reverse direction.
منابع مشابه
Stiffness of the gerbil basilar membrane: radial and longitudinal variations.
Experimental data on the mechanical properties of the tissues of the mammalian cochlea are essential for understanding the frequency- and location-dependent motion patterns that result in response to incoming sound waves. Within the cochlea, sound-induced vibrations are transduced into neural activity by the organ of Corti, the gross motion of which is dependent on the motion of the underlying ...
متن کاملDirect visualization of organ of corti kinematics in a hemicochlea.
The basilar membrane in the mammalian cochlea vibrates when the cochlea receives a sound stimulus. This mechanical vibration is transduced into hair cell receptor potentials and thereafter encoded by action potentials in the auditory nerve. Knowledge of the mechanical transformation that converts basilar membrane vibration into hair cell stimulation has been limited, until recently, to hypothet...
متن کاملBasilar membrane vibration is not involved in the reverse propagation of otoacoustic emissions
To understand how the inner ear-generated sound, i.e., otoacoustic emission, exits the cochlea, we created a sound source electrically in the second turn and measured basilar membrane vibrations at two longitudinal locations in the first turn in living gerbil cochleae using a laser interferometer. For a given longitudinal location, electrically evoked basilar membrane vibrations showed the same...
متن کاملLongitudinal pattern of basilar membrane vibration in the sensitive cochlea.
In the normal mammalian ear, sound vibrates the eardrum, causing the tiny bones of the middle ear to vibrate, transferring the vibration to the inner ear fluids. The vibration propagates from the base of the cochlea to its apex along the cochlear partition. As essential as this concept is to the theory of hearing, the waveform of cochlear partition vibration has yet to be measured in vivo. Here...
متن کاملMotion analysis in the hemicochlea.
Optical flow techniques are often used to estimate velocity fields to represent motion in successive video images. Usually the method is mathematically ill-posed, because the single scalar equation representing the conservation of local intensity contains more than one unknown velocity component. Instead of regularizing the problem using optimization techniques, we formulate a well-posed proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 79 5 شماره
صفحات -
تاریخ انتشار 1998