LIF-activated Jak signaling determines Esrrb expression during late-stage reprogramming
نویسندگان
چکیده
The regulatory process of naïve-state induced pluripotent stem cell (iPSC) generation is not well understood. Leukemia inhibitory factor (LIF)-activated Janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3) is the master regulator for naïve-state pluripotency achievement and maintenance. The estrogen-related receptor beta (Esrrb) serves as a naïve-state marker gene regulating self-renewal of embryonic stem cells (ESCs). However, the interconnection between Esrrb and LIF signaling for pluripotency establishment in reprogramming is unclear. We screened the marker genes critical for complete reprogramming during mouse iPSC generation, and identified genes including Esrrb that are responsive to LIF/Jak pathway signaling. Overexpression of Esrrb resumes the reprogramming halted by inhibition of Jak activity in partially reprogrammed cells (pre-iPSCs), and leads to the generation of pluripotent iPSCs. We further show that neither overexpression of Nanog nor stimulation of Wnt signaling, two upstream regulators of Esrrb in ESCs, stimulates the expression of Esrrb in reprogramming when LIF or Jak activity is blocked. Our study demonstrates that Esrrb is a specific reprogramming factor regulated downstream of the LIF/Jak signaling pathway. These results shed new light on the regulatory role of LIF pathway on complete pluripotency establishment during iPSC generation.
منابع مشابه
Pluripotency re-centered around Esrrb.
The orphan nuclear receptor estrogen-related receptor b (Esrrb) is a vital component of the core pluripotency network in embryonic stem cells (ESCs). However, its function is not clear and the identity of potential upstream regulators has remained elusive. Three elegant reports (Festuccia et al, 2012; Martello et al, 2012; Percharde et al, 2012) have now elucidated the role of Esrrb in ESC self...
متن کاملDifferential effects of Akt isoforms on somatic cell reprogramming.
Akt plays an important role in cell growth, proliferation and survival. The specific roles of the three Akt isoforms in somatic cell reprogramming have not been investigated. Here we report that, during iPSC generation, enhanced Akt1 activity promotes complete reprogramming mainly through increased activation of Stat3 in concert with leukemia inhibitory factor (LIF) and, to a lesser extent, thr...
متن کاملJAK-STAT3 and somatic cell reprogramming
Reprogramming somatic cells to pluripotency, especially by the induced pluripotent stem cell (iPSC) technology, has become widely used today to generate various types of stem cells for research and for regenerative medicine. However the mechanism(s) of reprogramming still need detailed elucidation, including the roles played by the leukemia inhibitory factor (LIF) signaling pathway. LIF is cent...
متن کاملStat3 Activation Is Limiting for Reprogramming to Ground State Pluripotency
The cytokine leukemia inhibitory factor (Lif) sustains self-renewal of mouse embryonic and induced pluripotent stem cells by activating Jak kinase and the transcription factor Stat3. Here we investigate whether Jak/Stat3 may also contribute to induction of pluripotency. EpiSCs derived from postimplantation embryos express low levels of Lif receptor and Stat3. We introduced into EpiSCs a Jak/Sta...
متن کاملRequirement of Leukemia Inhibitory Factor or Epidermal Growth Factor for Pre-Implantation Embryogenesis via JAK/STAT3 Signaling Pathways.
Leukemia inhibitory factor (LIF) plays a key role in the survivability of mouse embryos during pre-implantation. In this study, we verified the role of LIF by detecting gene expression in morula stage embryos through DNA microarray. Our results showed that LIF knockdown affected expression of 369 genes. After LIF supplementation, the epidermal growth factor (EGF) is most affected by LIF express...
متن کامل