Tailor-made approach to photodynamic therapy in the treatment of cancer based on Bcl-2 photodamage.
نویسندگان
چکیده
It is very important to elucidate the mechanism of action and identify the molecular determinant of photodynamic medicine, in order to increase the number of clinical applications of photodynamic therapy (PDT) and perform personalized medicine. We have previously reported that PDT using some photosensitizers, such as phthalocyanine 4 (Pc 4) damages the anti-apoptotic protein Bcl-2, and that Bcl-2 is a molecular PDT target using a mitochondrion-targeting photosensitizer. In this study, we examined the molecular targets of Photofrin-PDT and NPe6-PDT, which are approved for early stage lung cancers by the Japanese Ministry of Health Labor and Welfare, by evaluating the photodamage to Bcl-2 using Western blot analysis. Our results showed that Photofrin-PDT damaged Bcl-2, induced morphologically typical apoptosis, and demonstrated equal sensitivity between MCF-7c3 cells (human breast cancer cells expressing stably transfected procaspase-3) and Bcl-2 overexpressing cells, MCF-7c3-GFP-Bcl-2 cells, with a clonogenic assay. However, NPe6-PDT did not damage Bcl-2 and took longer to induce typical apoptosis compared with Photofrin-PDT. MCF-7c3-GFP-Bcl-2 cells were considerably more resistant to the lethal effects of NPe6-PDT than parental MCF-7c3 cells. In conclusion, Photofrin-PDT damages different molecular targets, and our data indicate that the extent of Bcl-2 photodamage can determine the sensitivity of cancer cells to apoptosis and to overall cell killing caused by PDT using Photofrin, but not the lysosomal targeting NPe6. The application of these findings to clinical PDT may depend on the levels of the Bcl-2 proteins in the tumor being treated, and the tailor-made medicine based on the Bcl-2 photodamage may overcome any resistance afforded by elevated amounts of Bcl-2.
منابع مشابه
بررسی بیان ژن کاسپاز 9 و القای آپوپتوز پس از فوتودینامیک تراپی با روی فتالوسیانین در ردهی سلولیSW872 سرطان پوست
Background and Objective: The treatment of cancer comes as a great challenge worldwide. Thus the development of effective therapies with minimal side effects is important. Photodynamic therapy is a non-invasive and new therapeutic approach for the treatment of cancer. Therefore, in this study, we evaluated the photodynamic effects of a light-sensitive compound, Zinc-phthalocyanine (ZnPc), on ce...
متن کاملRole of Photodynamic Therapy in the Treatment of Oral Cancer: A Review
Oral cancer is a major public health problem worldwide and is among the ten most common cancers. Despite the advances in research and treatment, oral cancer is still one of the major challenges in medical science. Common treatments for this cancer include surgery, radiotherapy, and chemotherapy, as well as adjuvant photodynamic therapy (PDT). The aim of this study was to evaluate oral cancer an...
متن کاملPhotodynamic Therapy: A New Approach to Remove Embryos of the Wistar Rat
Background Photodynamic therapy (PDT) is a promising new cancer treatment strategy which inactivates tumor cells by simultaneoulsy using light and a photosensitizer. The similarity between tumors and newly implanted embryos is notable. Extrauterine pregnancy (EUP) does not have a definite treatment and previous therapeutic options (medical and surgical) have not been effective or suitable. Ther...
متن کاملAssociation between the photodynamic loss of Bcl-2 and the sensitivity to apoptosis caused by phthalocyanine photodynamic therapy.
We have reported that photodynamic therapy (PDT) using the photosensitizer phthalocyanine (Pc) 4 and red light damages the antiapoptotic protein Bcl-2. Recently, using transient transfection of Bcl-2 deletion mutants, we identified the membrane anchorage domains of Bcl-2 as necessary to form the photosensitive target. However, it is not clear how Bcl-2 photodamage sensitizes cells to Pc 4-PDT-i...
متن کاملEnhanced apoptotic response to photodynamic therapy after bcl-2 transfection.
Apoptosis is a cellular death process involving the sequential activation of a series of caspases, endonucleases, and other enzymes. The initiation of apoptosis can be inhibited by overexpression of bcl-2 and certain other members of a related family of proteins. We examined the effects of bcl-2 overexpression on the apoptotic response to photodynamic therapy (PDT), using aluminum phthalocyanin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 33 4 شماره
صفحات -
تاریخ انتشار 2008