Spectral tuning by selective enhancement of electric and magnetic dipole emission.
نویسندگان
چکیده
We demonstrate that magnetic dipole transitions provide an additional degree of freedom for engineering emission spectra. Without the need for a high-quality optical cavity, we show how a simple gold mirror can strongly tune the emission of trivalent europium. We exploit the differing field symmetries of electric and magnetic dipoles to selectively direct the majority of emission through each of three major transitions (centered at 590, 620, and 700 nm), and present a model that accurately predicts this tuning from the local electric and magnetic density of optical states.
منابع مشابه
Europium-Doped NaYF4 Nanocrystals as Probes for the Electric and Magnetic Local Density of Optical States throughout the Visible Spectral Range
Absorption and emission in the ultraviolet, visible, and infrared spectral range are usually mediated by the electric-field component of light. Only some electronic transitions have significant "magnetic-dipole" character, meaning that they couple to the magnetic field of light. Nanophotonic control over magnetic-dipole emission has recently been demonstrated, and magnetic-dipole transitions ha...
متن کاملStrong enhancement of magnetic dipole emission in a multilevel electronic system.
The Purcell effect is commonly used to increase light emission by enhancing the radiative decay of electric dipole transitions. In this Letter, we demonstrate that the opposite effect, namely, the inhibition of electric dipole transitions, can be used to strongly enhance light emission via magnetic dipole transitions. Specifically, by exploiting the differing symmetries of competitive electric ...
متن کاملInvestigating Molecular Spontaneous Emission Rate Enhancement Close to Elliptical Nanoparticles by Boundary Integral Method
Utilizing boundary integral method (BIM), we investigate molecularspontaneous emission rate enhancement in the vicinity of plasmonic nanoparticles ofelliptical cross section. These types of nanoparticles can considerably enhance themolecule decay rate. The spontaneous emission rate can be modified by altering theaspect ratio of the elliptical nanoparticle, the background refractive index andnan...
متن کاملField tuning the g factor in InAs nanowire double quantum dots.
We study the effects of magnetic and electric fields on the g factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g factors are extracted from the spin resonance condition as a function ...
متن کاملEnhanced Magnetic and Electric Fields via Fano Resonances in Metasurfaces of Circular Clusters of Plasmonic Nanoparticles
We investigate for the first time the capacity of a twodimensional periodic array (a metasurface) of circular nanoclusters (CNCs) of plasmonic nanoparticles to support magnetic Fano resonances. These resonances are characterized by narrow angular and/or spectral features in the reflection/transmission/absorption coefficients associated with a circular disposition of nanoparticles’ dipole moment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 106 19 شماره
صفحات -
تاریخ انتشار 2011