Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells.

نویسندگان

  • Yuhua Zhou
  • Jing Yang
  • Haibin Su
  • Jie Zeng
  • San Ping Jiang
  • William A Goddard
چکیده

We have developed for fuel cells a novel proton exchange membrane (PEM) using inorganic phosphotungstic acid (HPW) as proton carrier and mesoporous silica as matrix (HPW-meso-silica) . The proton conductivity measured by electrochemical impedance spectroscopy is 0.11 S cm(-1) at 90 °C and 100% relative humidity (RH) with a low activation energy of ∼14 kJ mol(-1). In order to determine the energetics associated with proton migration within the HPW-meso-silica PEM and to determine the mechanism of proton hopping, we report density functional theory (DFT) calculations using the generalized gradient approximation (GGA). These DFT calculations revealed that the proton transfer process involves both intramolecular and intermolecular proton transfer pathways. When the adjacent HPWs are close (less than 17.0 Å apart), the calculated activation energy for intramolecular proton transfer within a HPW molecule is higher (29.1-18.8 kJ/mol) than the barrier for intermolecular proton transfer along the hydrogen bond. We find that the overall barrier for proton movement within the HPW-meso-silica membranes is determined by the intramolecular proton transfer pathway, which explains why the proton conductivity remains unchanged when the weight percentage of HPW on meso-silica is above 67 wt %. In contrast, the activation energy of proton transfer on a clean SiO2 (111) surface is computed to be as high as ∼40 kJ mol(-1), confirming the very low proton conductivity on clean silica surfaces observed experimentally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphotungstic acid functionalized silica nanocomposites with tunable bicontinuous mesoporous structure and superior proton conductivity and stability for fuel cells.

A novel proton exchange membrane using phosphotungstic acid (HPW) as proton carrier and cubic bicontinuous Ia3d mesoporous silica (meso-silica) as framework material is successfully developed as proton exchange membranes for fuel cells. Meso-silica is functionalized by 80wt% HPW using a vacuum impregnation method. The HPW-functionalized meso-silica (HPW-meso-silica) nanocomposites are character...

متن کامل

Modified CNTs/Nafion composite: The role of sulfonate groups on the performance of prepared proton exchange methanol fuel cell’s membrane

A novel Nafion®-based nanocomposite membrane was synthesized to be applied as direct methanol fuel cells (DMFCs). Carbon nanotubes (CNTs) were coated with a layer of silica and then reacted by chlorosulfonic acid to produce sulfonate-functionalized silicon dioxide coated carbon nanotubes (CNT@SiO2-SO3H). The functionalized CNTs were then introduced to Nafion®, and subsequently, methanol permeab...

متن کامل

Phosphoric acid functionalized pre-sintered meso-silica for high temperature proton exchange membrane fuel cells.

An inorganic proton exchange membrane based on sintered mesoporous silica and phosphoric acid was developed with a high proton conductivity of 0.06 S cm(-1) at 200 °C, achieving an excellent power output of 689 mW cm(-2) in H2 at 190 °C and 200 mW cm(-2) in methanol at 200 °C with no external humidification.

متن کامل

Fabrication and Characterization of Proton Conductive Membranes Based on Poly(methyl methacrylate-co-maleic anhydride)

In this study, proton conductive composite membranes were produced by using a poly(methylmethacrylate-co-maleic anhydride) (P(MMA-co-MAH)) copolymer and phosphotungstic Acid (PWA) as an additive of the proton conductive agent. P(MMA/MAH) 70/30, 50/50, and 30/70 were synthesized using a free radical polymerization reaction. PWA with a concentration of 2% was added to...

متن کامل

غشا کامپوزیتی برای غشای عبور پروتون پیل های سوختی بر اساس کوپلیمر متیل متا کریلات-مالایمید/ فسفوتنگستیک اسید

Poly(methyl methacrylate-co-nitrophenyl maleimide) (MMA-co-NMI) and poly(methyl‌‌‌‌ methacrylate-co-hydroxyphenyl maleimide)‌‌‌‌‌ (MMA-co-HMI) copolymers were synthesized using free radical polymerization of MMA with a new MI monomer containing phenyl and –NO2 groups. Proton exchange membrane fuel cell(PEMFC) were prepared using these copolymers as membrane matrix and phosphotungstic acid (PWA)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 136 13  شماره 

صفحات  -

تاریخ انتشار 2014