Spacetime Algebra and Electron Physics
نویسندگان
چکیده
This paper surveys the application of geometric algebra to the physics of electrons. It first appeared in 1996 and is reproduced here with only minor modifications. Subjects covered include non-relativistic and relativistic spinors, the Dirac equation, operators and monogenics, the Hydrogen atom, propagators and scattering theory, spin precession, tunnelling times, spin measurement, multiparticle quantum mechanics, relativistic multiparticle wave equations, and semiclassical mechanics.
منابع مشابه
Super algebra and Harmonic Oscillator in Anti de Sitter space
The harmonic oscillator in anti de Sitter space(AdS) is discussed. We consider the harmonic oscillator potential and then time independent Schrodinger equation in AdS space. Then we apply the supersymmetric Quantum Mechanics approach to solve our differential equation. In this paper we have solved Schrodinger equation for harmonic oscillator in AdS spacetime by supersymmetry approach. The shape...
متن کاملSpacetime Physics with Geometric Algebra1
This is an introduction to spacetime algebra (STA) as a unified mathematical language for physics. STA simplifies, extends and integrates the mathematical methods of classical, relativistic and quantum physics while elucidating geometric structure of the theory. For example, STA provides a single, matrixfree spinor method for rotational dynamics with applications from classical rigid body mecha...
متن کاملFinite-Range Electromagnetic Interaction and Magnetic Charges: Spacetime Algebra or Algebra of Physical Space?
A finite-range electromagnetic (EM) theory containing both electric and magnetic charges constructed using two vector potentials Aμ and Zμ is formulated in the spacetime algebra (STA) and in the algebra of the three-dimensional physical space (APS) formalisms. Lorentz, local gauge and EM duality invariances are discussed in detail in the APS formalism. Moreover, considerations about signature a...
متن کاملSpacetime diffeomorphisms and the Dirac algebra of constraints
We show that representations of the group of spacetime diffeomorphism and the Dirac algebra both arise in a phase-space histories version of canonical general relativity. This is the general-relativistic analogue of the novel time structure introduced previously in history theory: namely, the existence in non-relativistic physics of two types of time translation; and the existence in relativist...
متن کاملQuantum Electrodynamics on Noncommutative Spacetime
We propose a new method to quantize gauge theories formulated on a canonical noncommutative spacetime with fields and gauge transformations taken in the enveloping algebra. We show that the theory is renormalizable at one loop and compute the beta function and show that the spin dependent contribution to the anomalous magnetic moment of the fermion at one loop has the same value as in the commu...
متن کامل