Purification of Hydrogenase from Chlamydomonas reinhardtii.
نویسندگان
چکیده
A method is described which results in a 2750-fold purification of hydrogenase from Chlamydomonas reinhardtii, yielding a preparation which is approximately 40% pure. With a saturating amount of ferredoxin as the electron mediator, the specific activity of pure enzyme was calculated to be 1800 micromoles H(2) produced per milligram protein per minute. The molecular weight was determined to be 4.5 x 10(4) by gel filtration and 4.75 x 10(4) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has an abundance of acidic side groups, contains iron, and has an activation energy of 55.1 kilojoules per mole for H(2) production; these properties are similar to those of bacterial hydrogenases. The enzyme is less thermally stable than most bacterial hydrogenases, however, losing 50% of its activity in 1 hour at 55 degrees C. The K(m) of purified hydrogenase for ferredoxin is 10 micromolar, and the binding of these proteins to each other is enhanced under slightly acidic conditions. Purified hydrogenase also accepts electrons from a variety of artificial electron mediators, including sodium metatungstate, sodium silicotungstate, and several viologen dyes. A lag period is frequently observed before maximal activity is expressed with these artificial electron mediators, although the addition of sodium thiosulfate at least partially overcomes this lag.
منابع مشابه
Identification of genes required for hydrogenase activity in Chlamydomonas reinhardtii.
The eukaryotic green alga, Chlamydomonas reinhardtii, produces H(2) under anaerobic conditions, in a reaction catalysed by an [FeFe]-hydrogenase. To identify genes that influence H(2) production in C. reinhardtii, a library of 6000 colonies on agar plates was screened with sensitive chemochromic H(2)-sensor films for clones defective in H(2) production. Two mutants of particular interest were f...
متن کاملShewanella oneidensis: a new and efficient System for Expression and Maturation of heterologous [Fe-Fe] Hydrogenase from Chlamydomonas reinhardtii
BACKGROUND The eukaryotic green alga, Chlamydomonas reinhardtii, produces H2 under anaerobic conditions, in a reaction catalysed by a [Fe-Fe] hydrogenase HydA1. For further biochemical and biophysical studies a suitable expression system of this enzyme should be found to overcome its weak expression in the host organism. Two heterologous expression systems used up to now have several advantages...
متن کاملElucidating hydrogenase surfaces and tracing the intramolecular tunnels for hydrogenase inhibition in microalgal species
Intramolecular tunnels are majorly attracting attention as possible pathways for entry of inhibitors like oxygen and carbon monoxide to the active sites of the enzymes, hydrogenases. The results of homology modeling of the HydSL protein, a NiFe-hydrogenase from Chlamydomonas reinhardtii and Chlorella vulgaris are presented in this work. Here we identify and describe molecular tunnels observed i...
متن کاملInduction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii.
The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of ...
متن کاملInvestigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii
Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 75 3 شماره
صفحات -
تاریخ انتشار 1984