A generalization of (q,t)-Catalan and nabla operators

نویسندگان

  • N. Bergeron
  • M. Zabrocki
چکیده

We introduce non-commutative analogs of k-Schur functions and prove that their images by the noncommutative nabla operator H is ribbon Schur positive, up to a global sign. Inspired by these results, we define new filtrations of the usual (q, t)-Catalan polynomials by computing the image of certain commutative k-Schur functions by the commutative nabla operator∇. In some particular cases, we give a combinatorial interpretation of these polynomials in terms of nested quantum Dick paths. Résumé. Nous introduisons des analogues non commutatifs des k-fonctions de Schur et nous prouvons que leurs images par l’opérateur nabla non commutatif H est Schur-rubans positif, à un signe global près. Guidés par ses résultats, nous définissons de nouvelles filtrations des (q, t)-nombres de Catalan usuels en calculant l’image de certaines k-fonctions de Schur par l’opérateur nabla commutatif ∇. Dans certains cas particuliers, nous donnons une interprétation combinatoire de ces polynômes en termes de chemins de Dyck imbriqués.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SQUARE q , t - LATTICE PATHS AND ∇ ( p n )

The combinatorial q, t-Catalan numbers are weighted sums of Dyck paths introduced by J. Haglund and studied extensively by Haglund, Haiman, Garsia, Loehr, and others. The q, t-Catalan numbers, besides having many subtle combinatorial properties, are intimately connected to symmetric functions, algebraic geometry, and Macdonald polynomials. In particular, the n’th q, t-Catalan number is the Hilb...

متن کامل

SQUARE q , t - LATTICE PATHS AND ∇ ( p n ) NICHOLAS A

The combinatorial q, t-Catalan numbers are weighted sums of Dyck paths introduced by J. Haglund and studied extensively by Haglund, Haiman, Garsia, Loehr, and others. The q, t-Catalan numbers, besides having many subtle combinatorial properties, are intimately connected to symmetric functions, algebraic geometry, and Macdonald polynomials. In particular, the n’th q, t-Catalan number is the Hilb...

متن کامل

SQUARE q , t - LATTICE PATHS AND ∇ ( p n ) NICHOLAS

The combinatorial q, t-Catalan numbers are weighted sums of Dyck paths introduced by J. Haglund and studied extensively by Haglund, Haiman, Garsia, Loehr, and others. The q, t-Catalan numbers, besides having many subtle combinatorial properties, are intimately connected to symmetric functions, algebraic geometry, and Macdonald polynomials. In particular, the n’th q, t-Catalan number is the Hilb...

متن کامل

On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators

In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...

متن کامل

Limits of Modified Higher q,t-Catalan Numbers

The q, t-Catalan numbers can be defined using rational functions, geometry related to Hilbert schemes, symmetric functions, representation theory, Dyck paths, partition statistics, or Dyck words. After decades of intensive study, it was eventually proved that all these definitions are equivalent. In this paper, we study the similar situation for higher q, t-Catalan numbers, where the equivalenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008