Lipschitz Functions with Minimal Clarke Subdiierential Mappings

نویسندگان

  • Jonathan M. Borwein
  • Warren B. Moors
چکیده

In this paper we characterise, in terms of the upper Dini derivative, when the Clarke subdiierential mapping of a real-valued locally Lipschitz function is a minimal weak cusco. We then use this characterisation to deduce some new results concerning Lips-chitz functions with minimal subdiierential mappings. In the papers 7] and 1], the authors investigate a class of locally Lipschitz functions that possess`generic' diierentiability properties which are similar to those enjoyed by convex functions. This paper, continues this investigation. Let (X; jj jj) be a Banach space. We will call a Borel subset N X a Haar-null set if there exists a (not necessarily unique) Radon probability measure p on X such that p(x + N) = 0 for each x 2 X. (In this case, we call p a test-measure for N.) More generally, we say that a subset N X is a Haar-null set if it is contained in a Borel Haar-null set. Below, we list some of the properties enjoyed by Haar-null sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipschitz Functions with Maximal Clarke Subdi erentials Are Generic

We show that on a separable Banach space most Lipschitz functions have maximal Clarke subdiierential mappings. In particular, the generic nonexpansive function has the dual unit ball as its Clarke subdiierential at every point. Diverse corollaries are given.

متن کامل

Generalized subdi erentials: a Baire categorical approach

We use Baire categorical arguments to construct dramatically pathological locally Lipschitz functions. The origins of this approach can be traced back to Banach and Mazurkiewicz (1931) who independently used similar categorical arguments to show that \almost every continuous real-valued function deened on 0,1] is nowhere diierentiable". As with the results of Banach and Mazurkiewicz, it appears...

متن کامل

A Bornological Approach to Rotundity and Smoothness Applied to Approximation

In this paper we are interested in examining the geometry of a bounded convex function over a Banach space via its subdiierential mapping. We will consider two concepts. The rst is the single valuedness and continuity of the subdiierential mapping, and the second is the single valuedness and the continuity of the \inverse" of this mapping. The smoothness of f is important for the rst concept as...

متن کامل

Speculating about Mountains

The definition of the weak slope of continuous functions introduced by Degiovanni and Marzocchi (cf. [8]) and its interrelation with the notion “steepness” of locally Lipschitz functions are discussed. A deformation lemma and a mountain pass theorem for usco mappings are proved. The relation between these results and the respective ones for lower semicontinuous functions (cf. [7]) is considered...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996