Low power on-chip clocking for nanomagnetic logic circuits

نویسندگان

  • Mingliang Zhang
  • Li Cai
  • Xiaokuo Yang
  • Huanqing Cui
  • Zhichun Wang
  • Chaowen Feng
  • Sen Wang
چکیده

It is demonstrated that it is possible to switch the magnetisation of nanomagnets by employing the exchange interaction between magnets. This can implement on-chip clocking for nanomagnetic logic circuits by using a current-carrying copper wire circularly wrapped by ferromagnetic cladding. This scheme is potentially more energy efficient than yoked cladding clocking using an external magnetic field for magnetisation switching. Maxwell simulation shows that current flowing through copper wire can be reduced by about one hundred times compared with yoked clocking, which means power consumption could be lowered by 10 times. Micromagnetic simulation shows that the nanomagnetic chain aligned on the proposed clocking can achieve a correct functional state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Minimal-Cost Inherent-Feedback Approach for Low-Power MRF-Based Logic Gates

The Markov random field (MRF) theory has been accepted as a highly effective framework for designing noise-tolerant nanometer digital VLSI circuits. In MRF-based design, proper feedback lines are used to control noise and keep the circuits in their valid states. However, this methodology has encountered two major problems that have limited the application of highly noise immune MRF-based circui...

متن کامل

High-Speed Penternary Inverter Gate Using GNRFET

This paper introduces a new design of penternary inverter gate based on graphene nanoribbon field effect transistor (GNRFET). The penternary logic is one of Multiple-valued logic (MVL) circuits which are the best substitute for binary logic because of its low power-delay product (PDP) resulting from reduced complexity of interconnects and chip area. GNRFET is preferred over Si-MOSFET for circui...

متن کامل

High-Speed Ternary Half adder based on GNRFET

Superior electronic properties of graphene make it a substitute candidate for beyond-CMOSnanoelectronics in electronic devices such as the field-effect transistors (FETs), tunnel barriers, andquantum dots. The armchair-edge graphene nanoribbons (AGNRs), which have semiconductor behavior,are used to design the digital circuits. This paper presents a new design of ternary half a...

متن کامل

A New True-Single-Phase-Clocking BiCMOS Dynamic Pipelined Logic Family for High-Speed, Low-Voltage P - Solid-State Circuits, IEEE Journal of

New true-single-phase-clocking (TSPC) BiCMOS/ BiNMOS/BiPMOS dynamic logic circuits and BiCMOS/BiNMOS dynamic latch logic circuits for high-speed dynamic pipelined system applications are proposed and analyzed. In the proposed circuits, the bootstrapping technique is utilized to achieve fast near-full-swing operation. The circuit performance of the proposed new dynamic logic circuits and dynamic...

متن کامل

A Monolithic Digital Clock-Generator for On-Chip Clocking of Custom DSP's - Solid-State Circuits, IEEE Journal of

This work shows a robust and easily implemented clock generator for custom designs. It is a fully digital design suitable for both high-speed clocking and low-voltage applications. This clocking method is digital, and it avoids analog methods like phase locked loops or delay line loops. Instead, the clock generator is based on a ring counter which stops a ring oscillator after the correct numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014