Upper and Lower Bounds for Competitive Online Routing on Delaunay Triangulations
نویسندگان
چکیده
Consider a weighted graph G where vertices are points in the plane and edges are line segments. The weight of each edge is the Euclidean distance between its two endpoints. A routing algorithm on G has a competitive ratio of c if the length of the path produced by the algorithm from any vertex s to any vertex t is at most c times the length of the shortest path from s to t in G. If the length of the path is at most c times the Euclidean distance from s to t, we say that the routing algorithm on G has a routing ratio of c. We present an online routing algorithm on the Delaunay triangulation with competitive and routing ratios of 5.90. This improves upon the best known algorithm that has competitive and routing ratio 15.48. The algorithm is a generalization of the deterministic 1-local routing algorithm by Chew on the L1-Delaunay triangulation. When a message follows the routing path produced by our algorithm, its header need only contain the coordinates of s and t. This is an improvement over the currently known competitive routing algorithms on the Delaunay triangulation, for which the header of a message must additionally contain partial sums of distances along the routing path. We also show that the routing ratio of any deterministic k-local algorithm is at least 1.70 for the Delaunay triangulation and 2.70 for the L1-Delaunay triangulation. In the case of the L1-Delaunay triangulation, this implies that even though there exists a path between two points x and y whose length is at most 2.61|[xy]| (where |[xy]| denotes the length of the line segment [xy]), it is not always possible to route a message along a path of length less than 2.70|[xy]|. From these bounds on the routing ratio, we derive lower bounds on the competitive ratio of 1.23 for Delaunay triangulations and 1.12 for L1-Delaunay triangulations. 1998 ACM Subject Classification I.3.5 Computational Geometry and Object Modeling, G.2.2 Graph Theory
منابع مشابه
Upper and Lower Bounds for Online Routing on Delaunay Triangulations
Consider a weighted graph G whose vertices are points in the plane and edges are line segments between pairs of points whose weight is the Euclidean distance between its endpoints. A routing algorithm on G sends a message from any vertex s to any vertex t in G. The algorithm has a competitive ratio of c if the length of the path taken by the message is at most c times the length of the shortest...
متن کاملCompetitive Online Routing on Delaunay Triangulations
Let G be a graph, s ∈ G be a source node and t ∈ G be a target node. The sequence of adjacent nodes (graph walk) visited by a routing algorithm is a c-competitive route if its length in G is at most c times the length of the shortest path from s to t in G. We present 21.766-, 17.982and 15.479-competitive online routing algorithms on the Delaunay triangulation of an arbitrary given set of points...
متن کاملOnline Routing in Convex Subdivisions
We consider online routing algorithms for finding paths between the vertices of plane graphs. We show (1) there exists a routing algorithm for arbitrary triangulations that has no memory and uses no randomization, (2) no equivalent result is possible for convex subdivisions, (3) there is no competitive online routing algorithm under the Euclidean distance metric in arbitrary triangulations, and...
متن کاملCompetitive Online Routing in Geometric Graphs
We consider online routing algorithms for finding paths between the vertices of plane graphs. Although it has been shown in Bose et al. [4] that there exists no competitive routing scheme that works on all triangulations, we show that there exists a simple online O(1)-memory c-competitive routing strategy that approximates the shortest path in triangulations possessing the diamond property, i.e...
متن کاملOnline Routing in Triangulations
We consider online routing algorithms for routing between the vertices of embedded planar straight line graphs. Our results include (1) two deterministic memoryless routing algorithms, one that works for all Delaunay triangulations and the other that works for all regular triangulations, (2) a randomized memoryless algorithm that works for all triangulations, (3) an O(1) memory algorithm that w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1501.01783 شماره
صفحات -
تاریخ انتشار 2015