Reverse nearest neighbor search with a non-spatial aspect
نویسندگان
چکیده
With the recent surge in the use of the location-based service (LBS), the importance of spatial database queries has increased. The reverse nearest neighbor (RNN) search is one of the most popular spatial database queries. In most previous studies, the spatial distance is used for measuring the distance between objects. However, as the demands of users of the LBSs are becoming more complex, considering only the spatial factor as a distance measure is not sufficient. For example, through a hotel finding service, users want to choose a hotel considering not only the spatial distance, but also the non-spatial aspect of the hotel such as the quality which can be represented by the number of stars. Therefore, services that consider both spatial and non-spatial factors in measuring the distance are more useful for users. In such a case, techniques proposed in the previous studies cannot be used since the distance measure is different. In this paper, we propose an efficient method for the RNN search in which a distance measure involves both the spatial distance and the non-spatial aspect of an object. We conduct extensive experiments on a large dataset to evaluate the efficiency of the proposed method. The experimental results show that the proposed method is significantly efficient and scalable. & 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Exact and Approximate Reverse Nearest Neighbor Search for Multimedia Data
Reverse nearest neighbor queries are useful in identifying objects that are of significant influence or importance. Existing methods either rely on pre-computation of nearest neighbor distances, do not scale well with high dimensionality, or do not produce exact solutions. In this work we motivate and investigate the problem of reverse nearest neighbor search on high dimensional, multimedia dat...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملReverse-Nearest Neighbor Queries on Uncertain Moving Object Trajectories
Reverse nearest neighbor (RNN) queries in spatial and spatio-temporal databases have received significant attention in the database research community over the last decade. A reverse nearest neighbor (RNN) query finds the objects having a given query object as its nearest neighbor. RNN queries find applications in data mining, marketing analysis, and decision making. Most previous research on R...
متن کاملReverse k-Nearest Neighbor Search Based on Aggregate Point Access Methods
We propose an original solution for the general reverse k-nearest neighbor (RkNN) search problem in Euclidean spaces. Compared to the limitations of existing methods for the RkNN search, our approach works on top of MultiResolution Aggregate (MRA) versions of any index structures for multi-dimensional feature spaces where each non-leaf node is additionally associated with aggregate information ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Syst.
دوره 54 شماره
صفحات -
تاریخ انتشار 2015