Nonlocal Similarity Image Filtering
نویسندگان
چکیده
We exploit the recurrence of structures at different locations, orientations and scales in an image to perform denoising. While previous methods based on “nonlocal filtering” identify corresponding patches only up to translations, we consider more general similarity transformations. Due to the additional computational burden, we break the problem down into two steps: First, we extract similarity invariant descriptors at each pixel location; second, we search for similar patches by matching descriptors. The descriptors used are inspired by scale-invariant feature transform (SIFT), whereas the similarity search is solved via the minimization of a cost function adapted from local denoising methods. Our method compares favorably with existing denoising algorithms as tested on several datasets.
منابع مشابه
Feature-Based Nonlocal Polarimetric SAR Filtering
Polarimetric synthetic aperture radar (PolSAR) images are inherently contaminated by multiplicative speckle noise, which complicates the image interpretation and image analyses. To reduce the speckle effect, several adaptive speckle filters have been developed based on the weighted average of the similarity measures commonly depending on the model or probability distribution, which are often af...
متن کاملFoveated self-similarity in nonlocal image filtering
Nonlocal image filters suppress noise and other distortions by searching for similar patches at different locations within the image, thus exploiting the self-similarity present in natural images. This similarity is typically assessed by a windowed distance of the patches pixels. Inspired by the human visual system, we introduce a patch foveation operator and measure patch similarity through a ...
متن کاملVideo denoising using separable 4D nonlocal spatiotemporal transforms
We propose a powerful video denoising algorithm that exploits temporal and spatial redundancy characterizing natural video sequences. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering, where a higher-dimensional transform-domain representation is leveraged to enforce sparsity and thus regularize the data. The proposed algorithm exploits the mutual similarity...
متن کاملIterated Nonlocal Means for Texture Restoration
The recent nonlocal means filter is a very successful technique for denoising textured images. In this paper, we formulate a variational technique that leads to an adaptive version of this filter. In particular, in an iterative manner, the filtering result is employed to redefine the similarity of patches in the next iteration. We further introduce the idea to replace the neighborhood weighting...
متن کاملOptimized Parallelization for Nonlocal Means Based Low Dose CT Image Processing
Low dose CT (LDCT) images are often significantly degraded by severely increased mottled noise/artifacts, which can lead to lowered diagnostic accuracy in clinic. The nonlocal means (NLM) filtering can effectively remove mottled noise/artifacts by utilizing large-scale patch similarity information in LDCT images. But the NLM filtering application in LDCT imaging also requires high computation c...
متن کامل