Demystifying Information-Theoretic Clustering
نویسندگان
چکیده
Greg Ver Steeg [email protected] Aram Galstyan [email protected] Fei Sha [email protected] Simon DeDeo [email protected] 1 Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292, USA 2 University of Southern California, Los Angeles, CA 90089, USA 3 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA 4 School of Informatics and Computing, Indiana University, 901 E 10th St., Bloomington, IN 47408, USA
منابع مشابه
NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملA Non-parametric Maximum Entropy Clustering
Clustering is a fundamental tool for exploratory data analysis. Information theoretic clustering is based on the optimization of information theoretic quantities such as entropy and mutual information. Recently, since these quantities can be estimated in non-parametric manner, non-parametric information theoretic clustering gains much attention. Assuming the dataset is sampled from a certain cl...
متن کاملAn Efficient Approach Generating Optimized Clusters for Theoretic Clustering Using Data Mining
The aim of the data mining process is to extract information from a large data set and transform it into an understandable structure for further use. Data mining is the process of finding anomalies, patterns and correlations within large data sets to predict outcomes. Using a broad range of techniques, you can use this information to increase revenues, cut costs, improve customer relationships,...
متن کاملInformation Theoretic Clustering using Kernel Density Estimation
In recent years, information-theoretic clustering algorithms have been proposed which assign data points to clusters so as to maximize the mutual information between cluster labels and data [1, 2]. Using mutual information for clustering has several attractive properties: it is flexible enough to fit complex patterns in the data, and allows for a principled approach to clustering without assumi...
متن کاملCo-Clustering via Information-Theoretic Markov Aggregation
We present an information-theoretic cost function for co-clustering, i.e., for simultaneous clustering of two sets based on similarities between their elements. By constructing a simple random walk on the corresponding bipartite graph, our cost function is derived from a recently proposed generalized framework for information-theoretic Markov chain aggregation. The goal of our cost function is ...
متن کامل