Exploiting Model Equivalences for Solving Interactive Dynamic Influence Diagrams

نویسندگان

  • Yifeng Zeng
  • Prashant Doshi
چکیده

We focus on the problem of sequential decision making in partially observable environments shared with other agents of uncertain types having similar or conflicting objectives. This problem has been previously formalized by multiple frameworks one of which is the interactive dynamic influence diagram (I-DID), which generalizes the well-known influence diagram to the multiagent setting. I-DIDs are graphical models and may be used to compute the policy of an agent given its belief over the physical state and others’ models, which changes as the agent acts and observes in the multiagent setting. As we may expect, solving I-DIDs is computationally hard. This is predominantly due to the large space of candidate models ascribed to the other agents and its exponential growth over time. We present two methods for reducing the size of the model space and stemming its exponential growth. Both these methods involve aggregating individual models into equivalence classes. Our first method groups together behaviorally equivalent models and selects only those models for updating which will result in predictive behaviors that are distinct from others in the updated model space. The second method further compacts the model space by focusing on portions of the behavioral predictions. Specifically, we cluster actionally equivalent models that prescribe identical actions at a single time step. Exactly identifying the equivalences would require us to solve all models in the initial set. We avoid this by selectively solving some of the models, thereby introducing an approximation. We discuss the error introduced by the approximation, and empirically demonstrate the improved efficiency in solving I-DIDs due to the equivalences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating Value Equivalence in Interactive Dynamic Influence Diagrams Using Behavioral Coverage

Interactive dynamic influence diagrams (I-DIDs) provide an explicit way of modeling how a subject agent solves decision making problems in the presence of other agents in a common setting. To optimize its decisions, the subject agent needs to predict the other agents’ behavior, that is generally obtained by solving their candidate models. This becomes extremely difficult since the model space m...

متن کامل

Approximate solutions of interactive dynamic influence diagrams using ε-behavioral equivalence

Interactive dynamic influence diagrams (I-DID) are graphical models for sequential decision making in uncertain settings shared by other agents. Algorithms for solving I-DIDs face the challenge of an exponentially growing space of candidate models ascribed to other agents, over time. Pruning the behaviorally equivalent models is one way toward identifying a minimal model set. We seek to further...

متن کامل

Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering

Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models of the other agents, which increase exponentially with the number of time steps. We present a method of s...

متن کامل

Improved approximation of interactive dynamic influence diagrams using discriminative model updates

Interactive dynamic influence diagrams (I-DIDs) are graphical models for sequential decision making in uncertain settings shared by other agents. Algorithms for solving I-DIDs face the challenge of an exponentially growing space of candidate models ascribed to other agents, over time. We formalize the concept of a minimal model set, which facilitates qualitative comparisons between different ap...

متن کامل

ǫ-Subjective Equivalence of Models for Interactive Dynamic Influence Diagrams

Interactive dynamic influence diagrams (I-DID) are graphical models for sequential decision making in uncertain settings shared by other agents. Algorithms for solving I-DIDs face the challenge of an exponentially growing space of candidate models ascribed to other agents, over time. Pruning behaviorally equivalent models is one way toward minimizing the model set. We seek to further reduce the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Artif. Intell. Res.

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2012