Regression models for infant mortality data in Norwegian siblings, using a compound Poisson frailty distribution with random scale.
نویسندگان
چکیده
The power variance function distributions, which include the gamma and compound Poisson (CP) distributions among others, are commonly used in frailty models for family data. In a previous paper, we presented a frailty model constructed by randomizing the scale parameter in a CP distribution. When combined with a parametric baseline hazard, this yields a model with heterogeneity on both the individual and the family level and a subgroup with zero frailty, corresponding to people not experiencing the event. In this paper, we discuss covariates in the model. Depending on where the covariates are inserted in the model, one may have proportional hazards at the individual level, the family level, and a larger group level (for covariates shared by many families, e.g. ethnic groups) or get accelerated failure times. Each of these alternatives gives a specific interpretation of the covariate effects. An application to data infant mortality in siblings from the Medical Birth Registry of Norway is included. We compare the results for some of the different covariate modeling options.
منابع مشابه
Dynamic Frailty and Change Point Models for Recurrent Events Data
Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...
متن کاملUNOBSERVABLE HETEROGENEITY IN WEIBULL AND POISSON REGRESSION MODELS; AN APPLICATION TO TIlE STUDY OF INFANT MORTALITY IN NORTH CAROLINA
In many situations individuals with the same values for all observed covariables will have important covariables which cannot be measured or which were not measured during the study. These unknown or unmeasured covariables make the subpopulations, as defined by the observable covariables, heterogeneous. The present study explores the affect of unobservable heterogeneity in the context of Weibul...
متن کاملModeling Heterogeneity in Bivariate Survival Data by Compound Poisson Distribution using Bayesian Approach
Shared frailty models are often used to model heterogeneity in survival analysis. There are certain assumptions about the baseline distribution and distribution of frailty. In this paper, we consider compound Poisson distribution as frailty distribution and three different baseline distributions namely, Weibull, generalized exponential and exponential power distribution. With these three baseli...
متن کاملBayesian paradigm for analysing count data in longitudina studies using Poisson-generalized log-gamma model
In analyzing longitudinal data with counted responses, normal distribution is usually used for distribution of the random efffects. However, in some applications random effects may not be normally distributed. Misspecification of this distribution may cause reduction of efficiency of estimators. In this paper, a generalized log-gamma distribution is used for the random effects which includes th...
متن کاملUsing of frailty model baseline proportional hazard rate in Real Data Analysis
Many populations encountered in survival analysis are often not homogeneous. Individuals are flexible in their susceptibility to causes of death, response to treatment and influence of various risk factors. Ignoring this heterogeneity can result in misleading conclusions. To deal with these problems, the proportional hazard frailty model was introduced. In this paper, the frailty model is ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biostatistics
دوره 9 3 شماره
صفحات -
تاریخ انتشار 2008