Reduction of Multiple Harmonic Sums and Harmonic Polylogarithms
نویسنده
چکیده
The alternating and non-alternating harmonic sums and other algebraic objects of the same equivalence class are connected by algebraic relations which are induced by the product of these quantities and which depend on their index calss rather than on their value. We show how to find a basis of the associated algebra. The length of the basis l is found to be ≤ 1/d, where d is the depth of the sums considered and is given by the 2nd Witt formula. It can be also determined counting the Lyndon words of the respective index set. The relations derived can be used to simplify results of higher order calculations in QED and QCD.
منابع مشابه
Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials
The computation of Feynman integrals in massive higher order perturbative calculations in renormalizable Quantum Field Theories requires extensions of multiply nested harmonic sums, which can be generated as real representations by Mellin transforms of Poincaré– iterated integrals including denominators of higher cyclotomic polynomials. We derive the cyclotomic harmonic polylogarithms and harmo...
متن کاملSome results on q-harmonic number sums
In this paper, we establish some relations involving q-Euler type sums, q-harmonic numbers and q-polylogarithms. Then, using the relations obtained with the help of q-analog of partial fraction decomposition formula, we develop new closed form representations of sums of q-harmonic numbers and reciprocal q-binomial coefficients. Moreover, we give explicit formulas for several classes of q-harmon...
متن کاملStructural Relations of Harmonic Sums and Mellin Transforms at Weight w = 6 1 Johannes Blümlein
We derive the structural relations between nested harmonic sums and the corresponding Mellin transforms of Nielsen integrals and harmonic polylogarithms at weight w = 6. They emerge in the calculations of massless single–scale quantities in QED and QCD, such as anomalous dimensions and Wilson coefficients, to 3– and 4–loop order. We consider the set of the multiple harmonic sums at weight six w...
متن کاملHarmonic Polylogarithms
The harmonic polylogarithms (hpl’s) are introduced. They are a generalization of Nielsen’s polylogarithms, satisfying a product algebra (the product of two hpl’s is in turn a combination of hpl’s) and forming a set closed under the transformation of the arguments x = 1/z and x = (1−t)/(1+t). The coefficients of their expansions and their Mellin transforms are harmonic sums. AMS(1991) subject cl...
متن کاملGeneralized Harmonic, Cyclotomic, and Binomial Sums, their Polylogarithms and Special Numbers
A survey is given on mathematical structures which emerge in multi-loop Feynman diagrams. These are multiply nested sums, and, associated to them by an inverse Mellin transform, specific iterated integrals. Both classes lead to sets of special numbers. Starting with harmonic sums and polylogarithms we discuss recent extensions of these quantities as cyclotomic, generalized (cyclotomic), and bin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004