Motion Segmentation based on Factorization Method and Discriminant Criterion
نویسنده
چکیده
A motion segmentation algorithm based on factorization method and discriminant criterion is proposed. This method uses a feature with the most useful similarities for grouping, selected using motion information calculated by factorization method and discriminant criterion. A group is extracted based on discriminant analysis for the selected feature’s similarities. The same procedure is applied recursively to the remaining features to extract other groups. This grouping is robust against noise and outliers because features with no useful information are automatically rejected. Numerical computation is simple and stable. No prior knowledge is needed on the number of objects. Experimental results are shown for synthetic data and real image sequences.
منابع مشابه
Recursive Algorithms for Image Segmentation Based on a Discriminant Criterion
In this study, a new criterion for determining the number of classes an image should be segmented is proposed. This criterion is based on discriminant analysis for measuring the separability among the segmented classes of pixels. Based on the new discriminant criterion, two algorithms for recursively segmenting the image into determined number of classes are proposed. The proposed methods can a...
متن کاملA Robust and Efficient Motion Segmentation Based on Orthogonal Projection Matrix of Shape Space
A novel algorithm for motion segmentation is proposed. The algorithm uses the fact that shape of an object with homogeneous motion is represented as 4 dimensional linear space. Thus motion segmentation is done as the decomposition of shape space of multiple objects into a set of 4 dimensional subspace. The decomposition is realized using the discriminant analysis of orthogonal projection matrix...
متن کاملUsing Multiple Discriminant Analysis Approach for Linear Text Segmentation
Research on linear text segmentation has been an on-going focus in NLP for the last decade, and it has great potential for a wide range of applications such as document summarization, information retrieval and text understanding. However, for linear text segmentation, there are two critical problems involving automatic boundary detection and automatic determination of the number of segments in ...
متن کاملFactor analysis for speaker segmentation and improved speaker diarization
Speaker diarization includes two steps: speaker segmentation and speaker clustering. Speaker segmentation searches for speaker boundaries, whereas speaker clustering aims at grouping speech segments of the same speaker. In this work, the segmentation is improved by replacing the Bayesian Information Criterion (BIC) with a new iVector-based approach. Unlike BIC-based methods which trigger on any...
متن کاملImage Thresholding by Histogram Segmentation Using Discriminant Analysis
Image segmentation is often used to distinguish the foreground from the background. This paper proposes a novel method of image thresholding using the optimal histogram segmentation by the cluster organization based on the similarity between adjacent clusters. Since this method is not based on the minimization of a function, the problem of selecting the threshold at the local minima is avoided....
متن کامل