ClC-2 channels regulate neuronal excitability, not intracellular chloride levels.
نویسندگان
چکیده
Synaptic inhibition by GABA(A) receptors requires a transmembrane chloride gradient. Hyperpolarization or shunting results from outward current produced by chloride flowing down this gradient, into the cell. Chloride influx necessarily depletes the chloride gradient. Therefore, mechanisms that replenish the gradient (by reducing intracellular chloride concentration, [Cl(-)](i)) are crucial for maintaining the efficacy of GABA(A) receptor-mediated inhibition. ClC-2 is an inward-rectifying chloride channel that is thought to help extrude chloride because inward rectification should, in principle, allow ClC-2 to act as a one-way chloride exit valve. But chloride efflux via ClC-2 nevertheless requires an appropriate driving force. Using computer modeling, we reproduced voltage-clamp experiments showing chloride efflux via ClC-2, but testing the same model under physiological conditions revealed that ClC-2 normally leaks chloride into the cell. The discrepancy is explained by the driving force conditions that exist under artificial versus physiological conditions, and by the fact that ClC-2 rectification is neither complete nor instantaneous. Thus, contrary to previous assertions that ClC-2 helps maintain synaptic inhibition by lowering [Cl(-)](i), our simulations show that ClC-2 mediates chloride influx, thus producing outward current and directly reducing excitability. To test how ClC-2 functions in real neurons, we used dynamic clamp to insert virtual ClC-2 channels into rat CA1 pyramidal cells with and without native ClC-2 channels blocked. Experiments confirmed that ClC-2 reduces spiking independently of inhibitory synaptic transmission. Our results highlight the importance of considering driving force when inferring how a channel functions under physiological conditions.
منابع مشابه
The voltage-gated anion channels encoded by clh-3 regulate egg laying in C. elegans by modulating motor neuron excitability.
CLC-2 is a hyperpolarization-activated, inwardly rectifying chloride channel. Although the properties of the CLC-2 channel have been well characterized, its function in vivo is not well understood. We have found that channels encoded by the Caenorhabditis elegans CLC-2 homolog clh-3 regulate the activity of the spontaneously active hermaphrodite-specific neurons (HSNs), which control the egg-la...
متن کاملCLC-3 Channels Modulate Excitatory Synaptic Transmission in Hippocampal Neurons
It is well established that ligand-gated chloride flux across the plasma membrane modulates neuronal excitability. We find that a voltage-dependent Cl(-) conductance increases neuronal excitability in immature rodents as well, enhancing the time course of NMDA receptor-mediated miniature excitatory postsynaptic potentials (mEPSPs). This Cl(-) conductance is activated by CaMKII, is electrophysio...
متن کاملCytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels.
ClC proteins are a family of chloride channels and transporters that are found in a wide variety of prokaryotic and eukaryotic cell types. The mammalian voltage-gated chloride channel ClC-1 is important for controlling the electrical excitability of skeletal muscle. Reduced excitability of muscle cells during metabolic stress can protect cells from metabolic exhaustion and is thought to be a ma...
متن کاملClC-1 chloride channels: state-of-the-art research and future challenges
The voltage-dependent ClC-1 chloride channel belongs to the CLC channel/transporter family. It is a homodimer comprising two individual pores which can operate independently or simultaneously according to two gating modes, the fast and the slow gate of the channel. ClC-1 is preferentially expressed in the skeletal muscle fibers where the presence of an efficient Cl(-) homeostasis is crucial for...
متن کاملClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion.
The function of voltage-gated chloride channels in neurons is essentially unknown. The voltage-gated chloride channel ClC-2 mediates a chloride current in pyramidal cells of the hippocampus. We directly show that ClC-2 assists chloride extrusion after high chloride load. Furthermore, the loss of this chloride channel leads to a dramatic increase of the input resistance of CA1 pyramidal cells, m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 44 شماره
صفحات -
تاریخ انتشار 2011