Exercise-induced AMPK activation does not interfere with muscle hypertrophy in response to resistance training in men.
نویسندگان
چکیده
As aerobic exercise (AE) may interfere with adaptations to resistance exercise (RE), this study explored acute and chronic responses to consecutive AE (∼45 min cycling) and RE (4 × 7 maximal knee extensions) vs. RE only. Ten men performed acute unilateral AE + RE interspersed by 15 min recovery. The contralateral leg was subjected to RE. This exercise paradigm was then implemented in a 5-wk training program. Protein phosphorylation, gene expression, and glycogen content were assessed in biopsies obtained from the vastus lateralis muscle of both legs immediately before and 3 h after acute RE. Quadriceps muscle size and in vivo torque were measured, and muscle samples were analyzed for citrate synthase activity and glycogen concentration, before and after training. Acute AE reduced glycogen content (32%; P < 0.05) and increased (P < 0.05) phosphorylation of AMPK (1.5-fold) and rpS6 (1.3-fold). Phosphorylation of p70S6K and 4E-BP1 remained unchanged. Myostatin gene expression was downregulated after acute AE + RE but not RE. Muscle size showed greater (P < 0.05) increase after AE + RE (6%) than RE (3%) training. Citrate synthase activity (18%) and endurance performance (22%) increased (P < 0.05) after AE + RE but not RE. While training increased (P < 0.05) in vivo muscle strength in both legs, normalized and concentric torque increased after RE only. Thus AE activates AMPK, reduces glycogen stores, and impairs the progression of concentric force, yet muscle hypertrophic responses to chronic RE training appear not to be compromised.
منابع مشابه
The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat
Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...
متن کاملThe effect of resistance training on the expression of cardiac muscle growth regulator messenger genes in obese male rats
Background: Obesity is associated with cardiovascular disease, followed by pathological cardiac hypertrophy. However, physical activity (resistance training) plays a role in modulating some of the intracellular messenger pathways associated with the regulation of pathologic hypertrophy. The aim of this study was to investigate The effect of resistance training on the expression of cardiac muscl...
متن کاملThe Effect of Aerobic Training on expression of some indices of myocardial hypertrophy and atrophy in rats
Background: Protein synthesis and degradation are dynamically regulated processes that to control the accretion or loss of muscle mass. However, the mechanisms responsible exercise-induced heart hypertrophy remains elusive. The aim of this study was to investigate the effect of aerobic training on expression of some indices of myocardial hypertrophy and atrophy in male rats. Materials and Meth...
متن کاملResistance exercise-induced S6K1 kinase activity is not inhibited in human skeletal muscle despite prior activation of AMPK by high-intensity interval cycling.
Combining endurance and strength training in the same session has been reported to reduce the anabolic response to the latter form of exercise. The underlying mechanism, based primarily on results from rodent muscle, is proposed to involve AMPK-dependent inhibition of mTORC1 signaling. This hypothesis was tested in eight trained male subjects who in randomized order performed either resistance ...
متن کاملResistance exercise - induced S 6 K 1 kinase activity is not inhibited in human skeletal 1 muscle despite prior activation of AMPK by high - intensity interval cycling
20 Combining endurance and strength training in the same session has been reported to reduce 21 the anabolic response to the latter form of exercise. The underlying mechanism, based 22 primarily on results from rodent muscle, is proposed to involve AMPK-dependent inhibition 23 of mTORC1 signaling. This hypothesis was tested in eight trained male subjects who in a 24 randomized order performed e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 116 6 شماره
صفحات -
تاریخ انتشار 2014