The Complexity of Approximately Counting Stable Matchings
نویسندگان
چکیده
We investigate the complexity of approximately counting stable matchings in the k-attribute model, where the preference lists are determined by dot products of “preference vectors” with “attribute vectors”, or by Euclidean distances between “preference points“ and “attribute points”. Irving and Leather [16] proved that counting the number of stable matchings in the general case is #P -complete. Counting the number of stable matchings is reducible to counting the number of downsets in a (related) partial order [16] and is interreducible, in an approximation-preserving sense, to a class of problems that includes counting the number of independent sets in a bipartite graph (#BIS) [7]. It is conjectured that no FPRAS exists for this class of problems. We show this approximation-preserving interreducibilty remains even in the restricted k-attribute setting when k ≥ 3 (dot products) or k ≥ 2 (Euclidean distances). Finally, we show it is easy to count the number of stable matchings in the 1-attribute dot-product setting.
منابع مشابه
Counting Hypergraph Matchings up to Uniqueness Threshold
We study the problem of approximately counting matchings in hypergraphs of bounded maximum degree and maximum size of hyperedges. With an activity parameter λ, each matching M is assigned a weight λ|M |. The counting problem is formulated as computing a partition function that gives the sum of the weights of all matchings in a hypergraph. This problem unifies two extensively studied statistical...
متن کاملMarkov Chains and Polynomial Time Algorithms
This paper outlines the use of rapidly mixing Markov Chains in randomized polynomial time algorithms to solve approximately certain counting problems. They fall into two classes : combinatorial problems like counting the number of perfect matchings in certain graphs and geometric ones like computing the volumes of convex sets.
متن کاملApproximately Counting Perfect and General Matchings in Bipartite and General Graphs
Approximately Counting Perfect And General Matchings in Bipartite and General Graphs
متن کاملCounting Matchings with k Unmatched Vertices in Planar Graphs
We consider the problem of counting matchings in planar graphs. While perfect matchings in planar graphs can be counted by a classical polynomial-time algorithm [26, 33, 27], the problem of counting all matchings (possibly containing unmatched vertices, also known as defects) is known to be #P-complete on planar graphs [23]. To interpolate between the hard case of counting matchings and the eas...
متن کاملCounting perfect matchings and the switch chain
We examine the problem of exactly or approximately counting all perfect matchings in hereditary classes of nonbipartite graphs. In particular, we consider the switch Markov chain of Diaconis, Graham and Holmes. We determine the largest hereditary class for which the chain is ergodic, and define a large new hereditary class of graphs for which it is rapidly mixing. We go on to show that the chai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 437 شماره
صفحات -
تاریخ انتشار 2010