Crude Oil Price Forecast via an Eemd-based Fa-lssvr Ensemble Learning Paradigm
نویسنده
چکیده
Fluctuations in crude oil price significantly impact the global economic market. A rise or a fall leads to redistribution of wealth in both oil-exporting and importing countries. Under such background, efficient and accurate predictions for crude oil price are critical for a stable economic development. However, crude oil price forecasting has been proved to be an extremely tough task, due to its various interactive intrinsic and extrinsic factors. Considering the importance and difficulty of crude oil price prediction, we propose a novel ensemble learning paradigm to forecast international crude oil price.
منابع مشابه
An EMD-Based Neural Network Ensemble Learning Model for World Crude Oil Spot Price Forecasting
In this study, an empirical mode decomposition (EMD) based neural network ensemble learning model is proposed for world crude oil spot price modeling and forecasting. For this purpose, the original crude oil spot price series were first decomposed into a finite and often small number of intrinsic mode functions (IMFs). Then the three-layer feed-forward neural network (FNN) model was used to mod...
متن کاملBrent crude oil Price Forecast with Hybrid Model of Nonlinear Grey Model and Linear Arima Waste Correction
The characteristics of crude oil and the factors affecting the price of this energy carrier have caused its price forecast to always be considered by researchers, oil market activists, governments and policy makers. Since the price of crude oil is affected by many factors, therefore, continuous studies should be done in this way so that the estimates made over time, the results are more accurat...
متن کاملOil Price Forecasting with an EMD-Based Multiscale Neural Network Learning Paradigm
In this study, a multiscale neural network learning paradigm based on empirical mode decomposition (EMD) is proposed for crude oil price prediction. In this learning paradigm, the original price series are first decomposed into various independent intrinsic mode components (IMCs) with a range of frequency scales. Then the internal correlation structures of different IMCs are explored by neural ...
متن کاملModeling and Forecasting Effects of Crude Oil Price Changes on the US and UK GDP
       This paper proposes a new forecasting model for investigating relationship between the price of crude oil, as an important energy source and GDP of the US, as the largest oil consumer, and the UK, as the oil producer. GMDH neural network and MLFF neural network approaches, which are both non-linear models, are employed to forecast GDP responses to the oil price changes. The resul...
متن کاملForecasting Model for Crude Oil Price Using Artificial Neural Networks and Commodity Futures Prices
This paper presents a model based on multilayer feedforward neural network to forecast crude oil spot price direction in the short-term, up to three days ahead. A great deal of attention was paid on finding the optimal ANN model structure. In addition, several methods of data pre-processing were tested. Our approach is to create a benchmark based on lagged value of pre-processed spot price, the...
متن کامل