Low-frequency dispersive estimates for the Schrödinger group in higher dimensions
نویسندگان
چکیده
For a large class of real-valued potentials, V (x), x ∈ R, n ≥ 4 , we prove dispersive estimates for the low frequency part of e Pac, provided the zero is neither an eigenvalue nor a resonance of −∆+ V , where Pac is the spectral projection onto the absolutely continuous spectrum of −∆ + V . This class includes potentials V ∈ L(R) satisfying V (x) = O ( 〈x〉−(n+2)/2−ǫ ) , ǫ > 0. As a consequence, we extend the results in [4] to a larger class of potentials.
منابع مشابه
High frequency dispersive estimates for the Schrödinger equation in high dimensions
We prove optimal dispersive estimates at high frequency for the Schrödinger group for a class of real-valued potentials V (x) = O(〈x〉−δ), δ > n−1, and V ∈ Ck(R), k > kn, where n ≥ 4 and n−3 2 ≤ kn < n 2 . We also give a sufficient condition in terms of L 1 → L∞ bounds for the formal iterations of Duhamel’s formula, which might be satisfied for potentials of less regularity.
متن کاملThe Cauchy Problem for the Nonlinear Schrödinger Equation on a Compact Manifold
We discuss the wellposedness theory of the Cauchy problem for the nonlinear Schrödinger equation on compact Riemannian manifolds. New dispersive estimates on the linear Schrödinger group are used to get global existence in the energy space on arbitrary surfaces and three-dimensional manifolds, generalizing earlier results by Bourgain on tori. On the other hand, on specific manifolds such as sph...
متن کاملDispersive estimates for the Schrödinger equation in dimensions four and five
We prove optimal (that is, without loss of derivatives) dispersive estimates for the Schrödinger group e ) for a class of real-valued potentials V ∈ Ck(R), V (x) = O(〈x〉), where n = 4, 5, k > (n− 3)/2, δ > 3 if n = 4 and δ > 5 if n = 5.
متن کاملDispersive Estimates for the Schrödinger Equation for C
We investigate L → L∞ dispersive estimates for the Schrödinger equation iut − ∆u + V u = 0 in odd dimensions greater than three. We obtain dispersive estimates under the optimal smoothness condition for the potential, V ∈ C(n−3)/2(Rn), in dimensions five and seven. We also describe a method to extend this result to arbitrary odd dimensions.
متن کاملA Counterexample to Dispersive Estimates for Schrödinger Operators in Higher Dimensions
In dimension n > 3 we show the existence of a compactly supported potential in the differentiability class C, α < n−3 2 , for which the solutions to the linear Schrödinger equation in R, −i∂tu = −∆u+ V u, u(0) = f, do not obey the usual L → L∞ dispersive estimate. This contrasts with known results in dimensions n ≤ 3, where a pointwise decay condition on V is generally sufficient to imply dispe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Asymptotic Analysis
دوره 55 شماره
صفحات -
تاریخ انتشار 2007