Japanese Semantic Role Labeling with Hierarchical Tag Context Trees
نویسندگان
چکیده
In this paper we describe that the hierarchical tag context tree (HTCT) approach improves the accuracy of semantic role labeling on Japanese text. In Japanese language there are functional multiword expressions such as no-tame-ni and yotte that have potential to designate semantic relations between a predicate and its arguments. Since these expressions come to the end part of each argument, the performance of the CRF-based semantic role labeler can be improved by taking into account the last morphemes of each argument as features. We apply our proposed system to the annotated corpus of semantic role labels on a balanced Japanese corpus. The experimental results show that the CRFbased labeler with features extracted by HTCT approach outperforms the normal CRF-based labeler.
منابع مشابه
Using LTAG-Based Features for Semantic Role Labeling
Semantic role labeling (SRL) methods typically use features from syntactic parse trees. We propose a novel method that uses Lexicalized Tree-Adjoining Grammar (LTAG) based features for this task. We convert parse trees into LTAG derivation trees where the semantic roles are treated as hidden information learned by supervised learning on annotated data derived from PropBank. We extracted various...
متن کاملMistake-Driven Mixture of Hierarchical Tag Context Trees
This paper proposes a mistake-driven mixture method for learning a tag model. The method iteratively performs two procedures: 1. constructing a tag model based on the current data distribution and 2. updating the distribution by focusing on data that are not well predicted by the constructed model. The final tag model is constructed by mixing all the models according to their performance. To we...
متن کاملUtilizing Target-Side Semantic Role Labels to Assist Hierarchical Phrase-based Machine Translation
In this paper we present a novel approach of utilizing Semantic Role Labeling (SRL) information to improve Hierarchical Phrasebased Machine Translation. We propose an algorithm to extract SRL-aware Synchronous Context-Free Grammar (SCFG) rules. Conventional Hiero-style SCFG rules will also be extracted in the same framework. Special conversion rules are applied to ensure that when SRL-aware SCF...
متن کاملSemantic Role Labeling Using Dependency Trees
In this paper, a novel semantic role labeler based on dependency trees is developed. This is accomplished by formulating the semantic role labeling as a classification problem of dependency relations into one of several semantic roles. A dependency tree is created from a constituency parse of an input sentence. The dependency tree is then linearized into a sequence of dependency relations. A nu...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کامل