Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord.
نویسندگان
چکیده
Central sensitization, the hyperexcitability of spinal processing that often accompanies peripheral injury, is a major component of many persistent pain states. Here we report that the neurotrophin, brain-derived neurotrophic factor (BDNF), is a modulator of excitability within the spinal cord and contributes to the mechanism of central sensitization. BDNF, localized in primary sensory neuron cell bodies and central terminals, potentiates nociceptive spinal reflex responses in an in vitro spinal cord preparation and induces c-fos expression in dorsal horn neurons. NMDA receptor-mediated responses, known as a major contributor to central sensitization, were significantly enhanced by exogenous BDNF. Systemic NGF treatment, a procedure that mimics peripheral inflammatory states, raises BDNF levels in sensory neurons and increases nociceptive spinal reflex excitability. This increased central excitability is reduced by trkB-IgG, a BDNF "antagonist." We also show directly that inflammatory pain-related behavior depends on BDNF release in vivo. Thus behavioral nociceptive responses induced by intraplantar formalin and by intraplantar carageenan are significantly attenuated by trkB-IgG. Hence BDNF is appropriately localized and regulated in inflammatory states and is sufficient and necessary for the expression of central sensitization in the spinal cord. We propose that BDNF may function as a modulator of central sensitization in pathological states, and our results suggest that pharmacological antagonism of BDNF may prove an effective and novel analgesic strategy for the treatment of persistent inflammatory pain states.
منابع مشابه
Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord.
The primary sensory neurons that respond to noxious stimulation and project to the spinal cord are known to fall into two distinct groups: one sensitive to nerve growth factor and the other sensitive to glial cell-line-derived neurotrophic factor. There is currently considerable interest in the ways in which these factors may regulate nociceptor properties. Recently, however, it has emerged tha...
متن کاملRemyelination improvement after neurotrophic factors secreting cells transplantation in rat spinal cord injury
Objective(s): Neurotrophic factors secreting cells (NTS-SCs) may be a superior cell source for cell-based therapy in neurodegenerative diseases. NTS-SCs are able to secrete some neurotrophic Such as nerve growth factor and glia-derived neurotrophic factor. Our primary aim was to assess transplantation of neurotrophic factor secreting cells derived from human adipose-derived stem cells (hADSCs) ...
متن کاملEffects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science
Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...
متن کاملBDNF-induced facilitation of afferent evoked responses in lamina II neurons is reduced following neonatal spinal cord contusion injury
We previously reported that brain derived neurotrophic factor (BDNF), a pronociceptive neurotransmitter, induces synaptic facilitation of EPSC in lamina II neurons of neonatal rats up to P14 in an NMDA-receptor dependent manner (Garraway et al. 2003). Here we used the patch-clamp technique to study synaptic and NMDA-evoked responses in transverse spinal slices in the lumbar enlargement as well ...
متن کاملComparison of metabotropic glutamate receptor responses at segmental and descending inputs to motoneurons in neonatal rat spinal cord.
We compared the contribution of metabotropic glutamate receptors (mGluRs) to the generation and modulation of synaptic responses elicited in intracellularly recorded L5 motoneurons from neonatal rats by segmental and descending fibers. Dorsal root (DR) stimulation at high intensity (C-fiber strength) evoked long latency (2-5-s) depolarization in addition to early monosynaptic and polysynaptic r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 12 شماره
صفحات -
تاریخ انتشار 1999