A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods
نویسندگان
چکیده
In this paper, we investigate a simple limiter using weighted essentially non-oscillatory (WENO) methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving conservation laws, with the goal of obtaining a robust and high order limiting procedure to simultaneously achieve uniform high order accuracy and sharp, non-oscillatory shock transitions. The idea of this limiter is to reconstruct the entire polynomial, instead of reconstructing point values or moments in the classical WENO reconstructions. That is, the reconstruction polynomial on the target cell is a convex combination of polynomials on this cell and its neighboring cells and the nonlinear weights of the convex combination follow the classical WENO procedure. The main advantage of this limiter is its simplicity in implementation, especially for multi-dimensional meshes. Numerical results in one and two dimensions are provided to illustrate the behavior of this procedure.
منابع مشابه
Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter on unstructured meshes
In this paper we generalize a new type of compact Hermite weighted essentially nonoscillatory (HWENO) limiter for the Runge-Kutta discontinuous Galerkin (RKDG) methods, which were recently developed in [34] for structured meshes, to two dimensional unstructured triangular meshes. The main idea of this limiter is to reconstruct the new polynomial using the entire polynomials of the DG solution f...
متن کاملRunge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes
In [20], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes, with the goal of obtaining a r...
متن کاملRunge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes
In this paper we generalize a new type of limiters based on the weighted essentially nonoscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [31] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the en...
متن کاملBound - preserving modified exponential Runge - Kutta discontinuous Galerkin methods for scalar conservation laws with stiff source terms
In this paper, we develop bound-preserving modified exponential Runge-Kutta (RK) discontinuous Galerkin (DG) schemes to solve scalar conservation laws with stiff source terms by extending the idea in Zhang and Shu [39]. Exponential strong stability preserving (SSP) high order time discretizations are constructed and then modified to overcome the stiffness and preserve the bound of the numerical...
متن کاملRunge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter
Abstract In this paper, we propose a new type of weighted essentially non-oscillatory (WENO) limiter, which belongs to the class of Hermite WENO (HWENO) limiters, for the RungeKutta discontinuous Galerkin (RKDG) methods solving hyperbolic conservation laws. This new HWENO limiter is a modification of the simple WENO limiter proposed recently by Zhong and Shu [32]. Both limiters use information ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 232 شماره
صفحات -
تاریخ انتشار 2013