Sets of extended uniqueness and σ - porosity

نویسنده

  • Miroslav Zelený
چکیده

We show that there exists a closed non-σ-porous set of extended uniqueness. We also give a new proof of Lyons’ theorem, which shows that the class of H(n)-sets is not large in U0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Σ-porous Sets in Abstract Spaces

The main aim of this survey paper is to give basic information about properties and applications of σ-porous sets in Banach spaces (and some other infinite-dimensional spaces). This paper can be considered a partial continuation of the author’s 1987 survey on porosity and σ-porosity and therefore only some results, remarks, and references (important for infinite-dimensional spaces) are repeated...

متن کامل

Infinite games andσ-porosity

We show a new game characterizing various types of σ-porosity for Souslin sets in terms of winning strategies. We use the game to prove and reprove some new and older inscribing theorems for σ-ideals of σ-porous type in locally compact metric spaces.

متن کامل

Existence and uniqueness of solution of Schrodinger equation in extended Colombeau algebra

In this paper, we establish the existence and uniqueness result of the linear Schrodinger equation with Marchaud fractional derivative in Colombeau generalized algebra. The purpose of introducing Marchaud fractional derivative is regularizing it in Colombeau sense.

متن کامل

Inscribing Closed Non-σ-lower Porous Sets into Suslin Non-σ-lower Porous Sets

This paper is a continuation of the work done in [9]. We are interested in the following question within the context of σ-ideals of σ-porous type. Let X be a metric space and let be a σ-ideal of subsets of X . Let S⊂ X be a Suslin set with S / ∈ . Does there exist a closed set F ⊂ S which is not in ? The answer is positive provided that X is locally compact and is a σ-ideal of σP-porous sets, w...

متن کامل

Σ-porosity in Monotonic Analysis with Applications to Optimization

We introduce and study some metric spaces of increasing positively homogeneous (IPH) functions, decreasing functions, and conormal (upward) sets. We prove that the complements of the subset of strictly increasing IPH functions, of the subset of strictly decreasing functions, and of the subset of strictly conormal sets are σ-porous in corresponding spaces. Some applications to optimization are g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010