Nobiletin, a citrus flavonoid, reverses learning impairment associated with N-methyl-D-aspartate receptor antagonism by activation of extracellular signal-regulated kinase signaling.
نویسندگان
چکیده
Recent studies have indicated that learning-induced activation of extracellular signal-regulated kinase (ERK) signaling via N-methyl-D-aspartate (NMDA) receptors is required for consolidation of the resultant learning. These findings raise an idea that control of ERK signaling may be a potential target for treatment of cognitive dysfunction. Our recent studies have demonstrated that nobiletin, a polymethoxylated flavone from Citrus depressa, enhances cAMP/protein kinase A/ERK signaling in cultured rat hippocampal neurons and PC12D cells. Here, we, for the first time, present the evidence that this natural compound reverses learning impairment associated with NMDA receptor antagonism by activation of ERK in the hippocampus. Treatment with 50 mg/kg nobiletin reversed the NMDA receptor antagonist MK-801 (dizocilpine maleate)-induced learning impairment in mice. Western blot analysis also showed that nobiletin reversed MK-801-induced inhibition of learning-associated ERK activation in the hippocampus of the animals. Furthermore, consistent with these results, in cultured rat hippocampal neurons, nobiletin restored MK-801-induced impairment of NMDA-stimulated phosphorylation of ERK in a concentration-dependent manner. Taken together, the present study suggests that compounds that activate ERK signaling improve cognitive deficits associated with NMDA receptor hypofunction and that nobiletin may give us a new insight into therapeutic drug development for neurological disorders exhibiting cognitive impairment accompanied by a hypofunction of NMDA receptor-ERK signaling.
منابع مشابه
Upregulation of N-methyl-D-aspartate receptor subunits and c-Fos expressing genes in PC12D cells by nobiletin.
The N-methyl-D-aspartate (NMDA) receptor plays a key role in learning and memory. Our recent studies have shown that nobiletin from citrus peels activates the cAMP response element-binding protein (CREB) signaling pathway and ameliorates NMDA receptor antagonist-induced learning impairment by activating extracellular signal-regulated kinase. For the first time, we have shown that nobiletin sign...
متن کاملNobiletin induces inhibitions of Ras activity and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling to suppress cell proliferation in C6 rat glioma cells.
Ras, a small G-protein, physiologically directs cell proliferation and cell cycle via regulation of mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling cascade. Dysregulation of Ras/MEK/ERK signaling has been reported to cause tumorigenesis and gliomas. Nobiletin, a citrus flavonoid, has been shown to have anti-tumor cells action. However, it rema...
متن کاملLong-lasting impairment of associative learning is correlated with a dysfunction of N-methyl-D-aspartate-extracellular signaling-regulated kinase signaling in mice after withdrawal from repeated administration of phencyclidine.
In humans, the administration of phencyclidine causes schizophrenic-like symptoms that persist for several weeks after withdrawal from phencyclidine use. We demonstrated here that mice pretreated with phencyclidine (10 mg/kg/day s.c. for 14 days) showed an enduring impairment of associative in a Pavlovian fear conditioning 8 days after cessation of phencyclidine treatment. Extracellular signali...
متن کاملP22: The Association between TrkB Signaling Pathway and NMDARs in LTP Induction
Long-term potentiation (LTP) is a biological process of learning and memory after a high-frequency train of electrical stimulations. By binding of brain-derived neurotrophic factor (BDNF) to Tropomyosin receptor kinase B (TrKB) receptors in postsynaptic neurons, tyrosine kinase Fyn is bound to these receptors and hereby plays a mediating role to binding and activation of N-methyl-D-aspartic aci...
متن کاملScutellarin may alleviate cognitive deficits in a mouse model of hypoxia by promoting proliferation and neuronal differentiation of neural stem cells
Objective(s): Scutellarin, a flavonoid extracted from the medicinal herb Erigeron breviscapus Hand-Mazz, protects neurons from damage and inhibits glial activation. Here we examined whether scutellarin may also protect neurons from hypoxia-induced damage. Materials and Methods: Mice were exposed to hypoxia for 7 days and then administered scutellarin (50 mg/kg/d) or vehicle for 30 days Cognitiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 321 2 شماره
صفحات -
تاریخ انتشار 2007