Relating multiway discrepancy and singular values of nonnegative rectangular matrices
نویسنده
چکیده
The minimum k-way discrepancy mdk(C) of a rectangular matrix C of nonnegative entries is the minimum of the maxima of the withinand between-cluster discrepancies that can be obtained by simultaneous k-clusterings (proper partitions) of its rows and columns. In Theorem 2, irrespective of the size of C, we give the following estimate for the kth largest nontrivial singular value of the normalized matrix: sk ≤ 9mdk(C)(k + 2 − 9k lnmdk(C)), provided 0 < mdk(C) < 1 and k < rank(C). This statement is a certain converse of Theorem 7 of Bolla (2014), and the proof uses some lemmas and ideas of Butler (2006), where the k = 1 case is treated. The result naturally extends to the singular values of the normalized adjacency matrix of a weighted undirected or directed graph. © 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Singular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملUsing discrepancy to control singular values for nonnegative matrices
We will consider two parameters which can be associated with a nonnegative matrix: the second largest singular value of the “normalized” matrix, and the discrepancy of the entries (which is a measurement between the sum of the actual entries in blocks versus the expected sum). Our main result is to show that these are related in that discrepancy can be bounded by the second largest singular val...
متن کاملWeak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملNonnegative matrices with prescribed extremal singular values
We consider the problem of constructing nonnegative matrices with prescribed extremal singular values. In particular, given 2n−1 real numbers σ ( j) 1 and σ ( j) j , j = 1, . . . , n, we construct an n×n nonnegative bidiagonal matrix B and an n×n nonnegative semi-bordered diagonal matrix C , such that σ ( j) 1 and σ ( j) j are, respectively, the minimal and the maximal singular values of certai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 203 شماره
صفحات -
تاریخ انتشار 2016