Barium ferrite decorated reduced graphene oxide nanocomposite for effective electromagnetic interference shielding.
نویسندگان
چکیده
There is an increased interest in the development of high performance microwave shielding materials against electromagnetic pollution in recent years. Barium ferrite decorated reduced graphene oxide (BaFe12O19@RGO) nanocomposite was synthesized by a high energy ball milling technique and its electromagnetic properties were investigated in the frequency range of 12.4-18 GHz (Ku band). The results showed that barium ferrite (BaFe12O19) nanoparticles with an average particle size of 20-30 nm were well distributed and firmly anchored onto the surface of the reduced graphene oxide sheets. The obtained nanocomposite exhibited a saturation magnetization of 18.1 emu g(-1) at room temperature. The presence of BaFe12O19 nanoparticles in the nanocomposite enhances the space charge polarization, natural resonance, multiple scattering and the effective anisotropy energy leading to a high electromagnetic interference shielding effectiveness of 32 dB (∼99.9% attenuation) at a critical thickness of 3 mm. The results suggested that the as-prepared BaFe12O19@RGO nanocomposite showed great potential as an effective candidate for a new type of microwave absorbing material.
منابع مشابه
Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties
In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resultin...
متن کاملSYNTHESIS AND STRUCTURAL, MAGNETIC, AND ELECTROMAGNETIC CHARACTERIZATION OF COBALT FERRITE / REDUCED GRAPHENE OXIDE COMPOSITE
In this research, cobalt ferrite powders (CoFe2O4) and cobalt ferrite/reduced graphene oxide composite (CoFe2O4/RGO) were synthesized by the co-precipitation method. The phase structure, morphology, magnetic properties, and microwave absorption properties of the produced samples were investigated through various techniques. X-ray diffraction test indicated the successful formation of pure CoFe2...
متن کاملAnalysis of Reflectivity and Shielding Effectiveness of Absorbing Material–Conductor Laminate for Electromagnetic Compatibility
An absorbing material–conductor laminate is widely used for electromagnetic compatibility of electronic circuits at microwave frequencies. Such a laminate when properly designed will exhibit good results in terms of electromagnetic interference and compatibility. In this paper, microwave absorbing materials like 1) Ca-NiTi hexa ferrite composites (Ca (NiTi)x Fe12-2xO19) for x = 0.4, 2) M-Type B...
متن کاملEffect of Graphene Oxide Decorated With Synthesized Nano-CeO2 on Barrier Properties of Epoxy Anticorrosion Coatings
In this paper, graphene oxide decorated with cerium oxide (CeO2) nanoparticles was prepared and used as anticorrosive pigments in epoxy nanocomposite coatings. The synthesized nanoparticle was characterized by FTIR, XRD, SEM, and EDX analyses. Graphene oxide decorated with CeO2 nanoparticles was dispersed in epoxy resin by sonication. The optimum nanoparticle content of th...
متن کاملDye removal from water by zinc ferrite-graphene oxide nanocomposite
In this work, zinc ferrite magnetic and zinc ferrite-graphene oxide nanocomposite were synthesized through a facile hydrothermal method and dye removal capability as an adsorbent were studied. Fourier transform infrared spectroscopy FT-IR, X-ray diffraction XRD and scanning electron microscopy SEM were used to characterize the synthesized nanocomposite. The UV-Vis results showed that the additi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 3 شماره
صفحات -
تاریخ انتشار 2015