Tissue-specific changes in RNA synthesis in vivo during anoxia in crucian carp.

نویسندگان

  • Richard W Smith
  • Dominic F Houlihan
  • Göran E Nilsson
  • Julie Alexandre
چکیده

The overall energy budget for protein synthesis (i.e., transcription plus translation) is thought to consist of fixed and variable components, with RNA synthesis accounting for the former and protein synthesis the latter. During anoxia, the downregulation of protein synthesis (i.e., the variable component), to reduce energetic demand, is an important aspect of survival in crucian carp. The present study examines RNA synthesis during anoxia by labeling with [3H]uridine. A novel synthesis rate calculation is presented, which allows for the tissue-specific salvage of uridine, with synthesis rates finally expressed relative to DNA. After 48 h anoxia, the decline (29%) in brain RNA synthesis and increases in the heart and liver (132 and 871%, respectively) support known RNA functions during hypoxic/anoxic survival. This study provides evidence that, in an anoxia-tolerant species, survival mechanisms involving RNA are able to operate because tissue-specific restructuring of the RNA synthesis process enables fixed synthesis costs to be maintained; this may be as vital to survival as exploiting the variable energetic demand of protein synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does anoxia induce cell swelling in carp brains? In vivo MRI measurements in crucian carp and common carp.

Although both common and crucian carp survived 2 h of anoxia at 18 degrees C, the response of their brains to anoxia was quite different and indicative of the fact that the crucian carp is anoxia tolerant while the common carp is not. Using in vivo T(2) and diffusion-weighted magnetic resonance imaging (MRI), we studied anoxia induced changes in brain volume, free water content (T(2)), and wate...

متن کامل

Cell proliferation and gill morphology in anoxic crucian carp.

Is DNA replication/cell proliferation in vertebrates possible during anoxia? The oxygen dependence of ribonucleotide reductase (RNR) could lead to a stop in DNA synthesis, thereby making anoxic DNA replication impossible. We have studied this question in an anoxia-tolerant vertebrate, the crucian carp (Carassius carassius), by examining 5'-bromo-2'-deoxyuridine incorporation and proliferating c...

متن کامل

Dramatic increase of nitrite levels in hearts of anoxia-exposed crucian carp supporting a role in cardioprotection.

Nitrite (NO(2)(-)) functions as an important nitric oxide (NO) donor under hypoxic conditions. Both nitrite and NO have been found to protect the mammalian heart and other tissues against ischemia (anoxia)-reoxygenation injury by interacting with mitochondrial electron transport complexes and limiting the generation of reactive oxygen species upon reoxygenation. The crucian carp naturally survi...

متن کامل

Effects of Anoxia on Serotonin Metabolism in Crucian Carp Brain

In the brain, oxygen is required for both the synthesis and the degradation of monoamine transmitters, so monoaminergic systems can be expected to be strongly affected by anoxia. However, crucian carp {Carassius carassius L.) may survive anoxia for many days or even weeks. In the present study, crucian carp were exposed to anoxia for 22, 76, and 160 h at 8°C. All survived and were found to excr...

متن کامل

Crucian carp heart performance during anoxia and acidosis

The crucian carp (Carassius carassius L.) exhibits the unique ability among vertebrates to maintain cardiac performance at normoxic levels during prolonged anoxia exposure. This thesis investigates the hypothesis that this phenomenon is possible because the heart likely never experiences an extracellular pH below 7.4 due to the fish’s exclusive trait of converting lactate and H ions to ethanol....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 277 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1999