Crop Establishment Practices Are a Driver of the Plant Microbiota in Winter Oilseed Rape (Brassica napus)
نویسندگان
چکیده
Gaining a greater understanding of the plant microbiota and its interactions with its host plant heralds a new era of scientific discovery in agriculture. Different agricultural management practices influence soil microbial populations by changing a soil's physical, chemical and biological properties. However, the impact of these practices on the microbiota associated with economically important crops such as oilseed rape, are still understudied. In this work we investigated the impact of two contrasting crop establishment practices, conventional (plow based) and conservation (strip-tillage) systems, on the microbiota inhabiting different plant microhabitats, namely rhizosphere, root and shoot, of winter oilseed rape under Irish agronomic conditions. Illumina 16S rRNA gene sequence profiling showed that the plant associated microhabitats (root and shoot), are dominated by members of the bacterial phyla Proteobacteria, Actinobacteria and Bacteroidetes. The root and shoot associated bacterial communities displayed markedly distinct profiles as a result of tillage practices. We observed a very limited 'rhizosphere effect' in the root zone of WOSR, i.e., there was little or no increase in bacterial community richness and abundance in the WOSR rhizosphere compared to the bulk soil. The two tillage systems investigated did not appear to lead to any major long term differences on the bulk soil or rhizosphere bacterial communities. Our data suggests that the WOSR root and shoot microbiota can be impacted by management practices and is an important mechanism that could allow us to understand how plants respond to different management practices and environments.
منابع مشابه
Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus
Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ran...
متن کاملEfficacy of microbiological treatments and trap crop against pests of winter oilseed rape
Winter oilseed rape was cultivated in monoculture or in combination with turnip rape as trap crop sown in trap strip. Preventative microbiological treatments for diseases control in winter oilseed rape were tested using Trichoderma asperellum and product based on effective microorganisms. Microorganisms were effective to protect of oilseed rape and allowed to obtain higher yield comparing to un...
متن کاملMitigation of establishment of Brassica napus transgenes in volunteers using a tandem construct containing a selectively unfit gene.
Transgenic oilseed rape (Brassica napus) plants may remain as 'volunteer' weeds in following crops, complicating cultivation and contaminating crop yield. Volunteers can become feral as well as act as a genetic bridge for the transfer of transgenes to weedy relatives. Transgenic mitigation using genes that are positive or neutral to the crop, but deleterious to weeds, should prevent volunteer e...
متن کاملTransformation And Light Inducible Expression of cry1Ab Gene in Oilseed Rape (Brassica napus L.)
Rapeseed (Brassica napus L.) is the third most important oil crop in global productions. One of the major limiting factors for oilseed rape production is lepidopteran pests of the Brassicaceae family. Transgenic plants expressing Bacillus thuringiensis (Bt) genes are powerful tools in the integrated pest management of crop plants. In the present study, we used a synthetic Bt insecticidal crysta...
متن کاملGenetic Dissection of Blackleg Resistance Loci in Rapeseed (Brassica napus L.)
Blackleg disease caused by the heterothallic ascomycete fungus Leptosphaeria maculans (Desm.) Ces. et de Not. (anamorph: Phoma lingam Tode ex Fr.), is the major disease of Brassica crops such as turnip rape (Brassica rapa L. syn. B. campestris; 2n = 2x = 20, genome AA), cabbage (B. oleracea L.; 2n = 2x = 18, genome CC), rapeseed (syn. canola or oilseed rape B. napus L.; 2n = 4x = 38, genome AAC...
متن کامل