GON-1 and Fibulin Have Antagonistic Roles in Control of Organ Shape
نویسندگان
چکیده
Most developing organs are surrounded by an extracellular matrix (ECM), which must be remodeled to accommodate growth and morphogenesis. In C. elegans, the GON-1 ADAMTS metalloprotease regulates both elongation and shape of the developing gonad . Here, we report that either human ADAMTS-4 or ADAMTS-9 can substitute for GON-1 in transgenic worms, suggesting functional conservation between human and nematode homologs. We further identify fibulin (FBL-1), a widely conserved ECM component , as critical for gonadal morphogenesis. FBL-1 is expressed in nongonadal tissues but is present at the surface of the elongating gonad. A fibulin deletion mutant has a wider than normal gonad as well as body size defects. We find that GON-1 and fibulin have antagonistic roles in controlling gonadal shape. Depletion of fbl-1, but not other ECM components, rescues gon-1 elongation defects, and removal of gon-1 rescues fbl-1 width defects. Therefore, the GON-1 protease normally promotes tissue elongation and expansion, whereas the fibulin ECM protein blocks these key morphogenetic processes. We suggest that control of organ shape by GON-1 and fibulin in C. elegans may provide a model for similar cellular processes, including vasculogenesis, in humans.
منابع مشابه
Fibulin-1C and Fibulin-1D splice variants have distinct functions and assemble in a hemicentin-dependent manner.
Fibulins are a family of extracellular glycoproteins associated with basement membranes and elastic fibers in vertebrates. Conservation of the fibulin-1 gene throughout metazoan evolution includes fibulin-1C and fibulin-1D alternate splice variants, although little is known about variant specific functions that would justify this striking structural conservation. We have therefore investigated ...
متن کاملTissue Architecture in the C. elegans Gonad Depends on Interactions among Fibulin-1, Type IV collagen and the ADAMTS Extracellular Protease
Molecules in the extracellular matrix (ECM) regulate cellular behavior in both development and pathology. Fibulin-1 is a conserved ECM protein. The Caenorhabditis elegans ortholog, FBL-1, regulates gonad-arm elongation and expansion by acting antagonistically to GON-1, an ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family protease. The elongation of gonad arms is direc...
متن کاملRegulation of synaptic extracellular matrix composition is critical for proper synapse morphology.
Synapses are surrounded by a layer of extracellular matrix (ECM), which is instrumental for their development and maintenance. ECM composition is dynamically controlled by proteases, but how the precise composition of the ECM affects synaptic morphology is largely unknown. Through an unbiased forward genetic screen, we found that Caenorhabditis elegans gon-1, a conserved extracellular ADAMTS pr...
متن کاملDifferential Regulation of Elastic Fiber Formation by Fibulin-4 and -5*
Fibulin-4 and -5 are extracellular glycoproteins with essential non-compensatory roles in elastic fiber assembly. We have determined how they interact with tropoelastin, lysyl oxidase, and fibrillin-1, thereby revealing how they differentially regulate assembly. Strong binding between fibulin-4 and lysyl oxidase enhanced the interaction of fibulin-4 with tropoelastin, forming ternary complexes ...
متن کاملThe Protective Roles of Zinc and Magnesium in Cadmium-Induced Renal Toxicity in Male Wistar Rats
Background: Cadmium (Cd) is a heavy metal that has widespread use. It enters the food chain in different ways, including soil and water. Cadmium can cause dysfunction of different body organs. Zinc (Zn) and magnesium (Mg) supplementation can have protective effects against cadmium toxicity due to their antagonistic and antioxidants properties. This study examines the influence of supplemental...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 14 شماره
صفحات -
تاریخ انتشار 2004