On the Minkowski Measure

نویسنده

  • LINAS VEPSTAS
چکیده

The Minkowski Question Mark function relates the continued-fraction representation of the real numbers, to their binary expansion. This function is peculiar in many ways; one is that its derivative is ’singular’. One can show by classical techniques that its derivative must vanish on all rationals. Since the Question Mark itself is continuous, one concludes that the derivative must be non-zero on the irrationals, and is thus a discontinuous-everywhere function. This derivative is the subject of this essay. Various results are presented here: First, a simple but formal measure-theoretic construction of the derivative is given, making it clear that it has a very concrete existence as a Lebesgue-Stieltjes measure, and thus is safe to manipulate in various familiar ways. Next, an exact result is given, expressing the measure as an infinite product of piece-wise continuous functions, with each piece being a Möbius transform of the form (ax+ b)/(cx+ d). This construction is then shown to be the Haar measure of a certain transfer operator. A general proof is given that any transfer operator can be understood to be nothing more nor less than a push-forward on a Banach space; such push-forwards induce an invariant measure, the Haar measure, of which the Minkowski measure can serve as a prototypical example. Some minor notes pertaining to it’s relation to the Gauss-Kuzmin-Wirsing operator, are made.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

General Minkowski type and related inequalities for seminormed fuzzy integrals

Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.

متن کامل

m-Projections involving Minkowski inverse and range symmetric property in Minkowski space

In this paper we study the impact of Minkowski metric matrix on a projection in the Minkowski Space M along with their basic algebraic and geometric properties.The relation between the m-projections and the Minkowski inverse of a matrix A in the minkowski space M is derived. In the remaining portion commutativity of Minkowski inverse in Minkowski Space M is analyzed in terms of m-projections as...

متن کامل

Translation Surfaces of the Third Fundamental Form in Lorentz-Minkowski Space

In this paper we study translation surfaces with the non-degenerate third fundamental form in Lorentz- Minkowski space $mathbb{L}^{3}$. As a result, we classify translation surfaces satisfying an equation in terms of the position vector field and the Laplace operator with respect to the third fundamental form $III$ on the surface.

متن کامل

Volume difference inequalities for the projection and intersection bodies

In this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. Following this, we establish the Minkowski and Brunn-Minkowski inequalities for volumes difference function of the projection and intersection bodies.

متن کامل

The Infinitesimal Form of Brunn-minkowski Type Inequalities

Log-Brunn-Minkowski inequality was conjectured by Boröczky, Lutwak, Yang and Zhang [7], and it states that a certain strengthening of the classical Brunn-Minkowski inequality is admissible in the case of symmetric convex sets. It was recently shown by Nayar, Zvavitch, the second and the third authors [27], that Log-Brunn-Minkowski inequality implies a certain dimensional Brunn-Minkowski inequal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008