I2RNTU at SemEval-2016 Task 4: Classifier Fusion for Polarity Classification in Twitter

نویسندگان

  • Zhengchen Zhang
  • Chen Zhang
  • Fuxiang Wu
  • Dong-Yan Huang
  • Weisi Lin
  • Minghui Dong
چکیده

In this work, we apply classifier fusion to tweet polarity identification problem. The task is to predict whether the emotion hidden in a tweet is positive, neutral, or negative. An asymmetric SIMPLS (ASIMPLS) based classifier, which was proved to be able to identify the minority class well in imbalanced classification problems, is implemented. Word embedding is also employed as a new feature. For each word, we obtain three word embedding vectors on positive, neutral, and negative tweet sets respectively. These vectors are used as features in the ASIMPLS classifier. Another three state-of-the-art systems are implemented also, and these four systems are fused together to further boost the performance. The fusion system achieved 59.63% accuracy on the 2016 test set of SemEval2016 Task 4, Subtask A.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CICBUAPnlp at SemEval-2016 Task 4-A: Discovering Twitter Polarity using Enhanced Embeddings

This paper presents our approach for SemEval 2016 task 4: Sentiment Analysis in Twitter. We participated in Subtask A: Message Polarity Classification. The aim is to classify Twitter messages into positive, neutral, and negative polarity. We used a lexical resource for pre-processing of social media data and train a neural network model for feature representation. Our resource includes dictiona...

متن کامل

mib at SemEval-2016 Task 4a: Exploiting lexicon based features for Sentiment Analysis in Twitter

This work presents our team solution for task 4a (Message Polarity Classification) at the SemEval 2016 challenge. Our experiments have been carried out over the Twitter dataset provided by the challenge. We follow a supervised approach, exploiting a SVM polynomial kernel classifier trained with the challenge data. The classifier takes as input advanced NLP features. This paper details the featu...

متن کامل

SwissCheese at SemEval-2016 Task 4: Sentiment Classification Using an Ensemble of Convolutional Neural Networks with Distant Supervision

In this paper, we propose a classifier for predicting message-level sentiments of English micro-blog messages from Twitter. Our method builds upon the convolutional sentence embedding approach proposed by (Severyn and Moschitti, 2015a; Severyn and Moschitti, 2015b). We leverage large amounts of data with distant supervision to train an ensemble of 2-layer convolutional neural networks whose pre...

متن کامل

ej-sa-2017 at SemEval-2017 Task 4: Experiments for Target oriented Sentiment Analysis in Twitter

This paper describes the system we have used for participating in Subtasks A (Message Polarity Classification) and B (TopicBased Message Polarity Classification according to a two-point scale) of SemEval2017 Task 4 Sentiment Analysis in Twitter. We used several features with a sentiment lexicon and NLP techniques, Maximum Entropy as a classifier for our system.

متن کامل

GTI at SemEval-2016 Task 4: Training a Naive Bayes Classifier using Features of an Unsupervised System

This paper presents the approach of the GTI Research Group to SemEval-2016 task 4 on Sentiment Analysis in Twitter, or more specifically, subtasks A (Message Polarity Classification), B (Tweet classification according to a two-point scale) and D (Tweet quantification according to a two-point scale). We followed a supervised approach based on the extraction of features by a dependency parsing-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016