Immobilization of Moniliella spathulata R25L270 Lipase on Ionic, Hydrophobic and Covalent Supports: Functional Properties and Hydrolysis of Sardine Oil.
نویسندگان
چکیده
The oleaginous yeast Moniliella spathulata R25L270 was the first yeast able to grow and produce extracellular lipase using Macaúba (Acrocomia aculeate) cake as substrate. The novel lipase was recently identified, and presented promising features for biotechnological applications. The M. spathulata R25L270 lipase efficiently hydrolyzed vegetable and animal oils, and showed selectivity for generating cis-5,8,11,15,17-eicosapentaenoic acid from sardine oil. The enzyme can act in a wide range of temperatures (25-48 °C) and pH (6.5-8.4). The present study deals with the immobilization of M. spathulata R25L270 lipase on hydrophobic, covalent and ionic supports to select the most active biocatalyst capable to obtain omega-3 fatty acids (PUFA) from sardine oil. Nine immobilized agarose derivatives were prepared and biochemically characterized for thermostability, pH stability and catalytic properties (KM and Vmax). Ionic supports improved the enzyme-substrate affinity; however, it was not an effective strategy to increase the M. spathulata R25L270 lipase stability against pH and temperature. Covalent support resulted in a biocatalyst with decreased activity, but high thermostability. The enzyme was most stabilized when immobilized on hydrophobic supports, especially Octyl-Sepharose. Compared with the free enzyme, the half-life of the Octyl-Sepharose derivative at 60 °C increased 10-fold, and lipase stability under acidic conditions was achieved. The Octyl-Sepharose derivative was selected to obtain omega-3 fatty acids from sardine oil, and the maximal enzyme selectivity was achieved at pH 5.0.
منابع مشابه
Macaúba (Acrocomia aculeata) cake from biodiesel processing: a low-cost substrate to produce lipases from Moniliella spathulata R25L270 with potential application in the oleochemical industry
BACKGROUND Biodiesel industry wastes were evaluated as supplements for lipase production by Moniliella spathulata R25L270, which is newly identified yeast with great lipolytic potential. Macaúba cake (MC), used for the first time in this work as inducer to produce lipases, and residual oil (RO) were mixed to maximise enzyme production. The lipase secreted was biochemically characterised. RESU...
متن کاملRelease of Omega-3 Fatty Acids by the Hydrolysis of Fish Oil Catalyzed by Lipases Immobilized on Hydrophobic Supports
The release of omega-3 fatty acids by the mild enzymatic hydrolysis of sardine oil was studied. The derivatives of different lipases physically adsorbed on hydrophobic porous supports Hydrophobic Lipase Derivatives (HLD) were tested. These immobilized lipases can only hydrolyze oil molecules partitioned into the aqueous phase of a biphasic reaction system. HLD biocatalysts were compared to othe...
متن کاملOptimization of Candida rugosa lipase immobilization parameters on magnetic silica aerogel using adsorption method
Magnetic silica aerogel in hydrophobic and hydrophilic forms were used as support to immobilize Candida rugosa lipase by adsorption method. Response surface methodology (RSM) was employed to study the effects of the three most important immobilization parameters, namely enzyme/support ratio (0.3-0.5, w/w), immobilization time (60-120 min) and alcohol percentage (20-40, %v/v) on the specific act...
متن کاملImmobilization of Lipase from Penicillium sp. Section Gracilenta (CBMAI 1583) on Different Hydrophobic Supports: Modulation of Functional Properties.
Lipases are promising enzymes that catalyze the hydrolysis of triacylglycerol ester bonds at the oil/water interface. Apart from allowing biocatalyst reuse, immobilization can also affect enzyme structure consequently influencing its activity, selectivity, and stability. The lipase from Penicillium sp. section Gracilenta (CBMAI 1583) was successfully immobilized on supports bearing butyl, pheny...
متن کاملNew Heterofunctional Supports Based on Glutaraldehyde-Activation: A Tool for Enzyme Immobilization at Neutral pH.
Immobilization is an exciting alternative to improve the stability of enzymatic processes. However, part of the applied covalent strategies for immobilization uses specific conditions, generally alkaline pH, where some enzymes are not stable. Here, a new generation of heterofunctional supports with application at neutral pH conditions was proposed. New supports were developed with different bif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2017