HIV-1 gp120 and morphine induced oxidative stress: role in cell cycle regulation
نویسندگان
چکیده
HIV infection and illicit drugs are known to induce oxidative stress and linked with severity of viral replication, disease progression, impaired cell cycle regulation and neurodegeneration. Studies have shown that morphine accelerates HIV infection and disease progression mediated by Reactive oxygen species (ROS). Oxidative stress impact redox balance and ROS production affect cell cycle regulation. However, the role of morphine in HIV associated acceleration of oxidative stress and its link to cell cycle regulation and neurodegeneration has not been elucidated. The aim of present study is to elucidate the mechanism of oxidative stress induced glutathione synthases (GSS), super oxide dismutase (SOD), and glutathione peroxidase (GPx) impact cell cycle regulated protein cyclin-dependent kinase 1, cell division cycle 2 (CDK-1/CDC-2), cyclin B, and cell division cycle 25C (CDC-25C) influencing neuronal dysfunction by morphine co-morbidity with HIV-1 gp120. It was observed that redox imbalance inhibited the GSS, GPx and increased SOD which, subsequently inhibited CDK-1/CDC-2 whereas cyclin B and CDC-25C significantly up regulated in HIV-1 gp120 with morphine compared to either HIV-1 gp120 or morphine treated alone in human microglial cell line. These results suggest that HIV positive morphine users have increased levels of oxidative stress and effect of cell cycle machinery, which may cause the HIV infection and disease progression.
منابع مشابه
HIV-1 coinfection and morphine coexposure severely dysregulate hepatitis C virus-induced hepatic proinflammatory cytokine release and free radical production: increased pathogenesis coincides with uncoordinated host defenses.
Coinfection with human immunodeficiency virus type-1 (HIV-1) and hepatitis C virus (HCV) is a global problem that is more prevalent in injection drug users because they have a higher risk for acquiring both viruses. The roles of inflammatory cytokines and oxidative stress were examined in HIV-1- and HCV-coinfected human hepatic cells. Morphine (the bioactive product of heroin), HIV-1 Tat and th...
متن کاملHIV-1 Gp120 clade B/C induces a GRP78 driven cytoprotective mechanism in astrocytoma
HIV-1 clades are known to be one of the key factors implicated in modulating HIV-associated neurocognitive disorders. HIV-1 B and C clades account for the majority of HIV-1 infections, clade B being the most neuropathogenic. The mechanisms behind HIV-mediated neuropathogenesis remain the subject of active research. We hypothesized that HIV-1 gp120 clade B and C proteins may exert differential p...
متن کاملProtective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling
Objective(s): Oxidative stress has been established as a key cause of alcohol-induced hepatotoxicity. Licochalcone B, an extract of licorice root, has shown antioxidative properties. This study was to investigate the effects and mechanisms of licochalcone B in ethanol-induced hepatic injury in an in vitro study. Materials and Methods: An in vitro model of Ethanol-induced cytotoxicity in BRL cel...
متن کاملHIV proteins (gp120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain: potential role of the thiol antioxidant N-acetylcysteine amide.
An increased risk of HIV-1 associated dementia (HAD) has been observed in patients abusing methamphetamine (METH). Since both HIV viral proteins (gp120, Tat) and METH induce oxidative stress, drug abusing patients are at a greater risk of oxidative stress-induced damage. The objective of this study was to determine if N-acetylcysteine amide (NACA) protects the blood brain barrier (BBB) from oxi...
متن کاملA novel antioxidant N-acetylcysteine amide prevents gp120- and Tat-induced oxidative stress in brain endothelial cells.
Free radical production and, consequently, oxidative stress play an important role in the pathogenesis of AIDS and cause damage to lipids, proteins, and DNA. In our previous study, the HIV-1 envelope glycoprotein (gp120) and transregulatory protein (Tat) of HIV-1 have been found to induce oxidative stress in an immortalized endothelial cell line from rat brain capillaries, RBE4 (in vitro model ...
متن کامل