Chloride currents from the transverse tubular system in adult mammalian skeletal muscle fibers
نویسندگان
چکیده
Chloride fluxes are the main contributors to the resting conductance of mammalian skeletal muscle fibers. ClC-1, the most abundant chloride channel isoform in this preparation, is believed to be responsible for this conductance. However, the actual distribution of ClC-1 channels between the surface and transverse tubular system (TTS) membranes has not been assessed in intact muscle fibers. To investigate this issue, we voltageclamped enzymatically dissociated short fibers using a two-microelectrode configuration and simultaneously recorded chloride currents (I(Cl)) and di-8-ANEPPS fluorescence signals to assess membrane potential changes in the TTS. Experiments were conducted in conditions that blocked all but the chloride conductance. Fibers were equilibrated with 40 or 70 mM intracellular chloride to enhance the magnitude of inward I(Cl), and the specific ClC-1 blocker 9-ACA was used to eliminate these currents whenever necessary. Voltage-dependent di-8-ANEPPS signals and I(Cl) acquired before (control) and after the addition of 9-ACA were comparatively assessed. Early after the onset of stimulus pulses, di-8-ANEPPS signals under control conditions were smaller than those recorded in the presence of 9-ACA. We defined as attenuation the normalized time-dependent difference between these signals. Attenuation was discovered to be I(Cl) dependent since its magnitude varied in close correlation with the amplitude and time course of I(Cl). While the properties of I(Cl), and those of the attenuation seen in optical records, could be simultaneously predicted by model simulations when the chloride permeability (P(Cl)) at the surface and TTS membranes were approximately equal, the model failed to explain the optical data if P(Cl) was precluded from the TTS membranes. Since the ratio between the areas of TTS membranes and the sarcolemma is large in mammalian muscle fibers, our results demonstrate that a significant fraction of the experimentally recorded I(Cl) arises from TTS contributions.
منابع مشابه
Effects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملAn improved vaseline gap voltage clamp for skeletal muscle fibers
A Vaseline gap potentiometric recording and voltage clamp method is developed for frog skeletal muscle fibers. The method is based on the Frankenhaeuser-Dodge voltage clamp for myelinated nerve with modifications to improve the frequency response, to compensate for external series resistance, and to compensate for the complex impedance of the current-passing pathway. Fragments of single muscle ...
متن کاملExamination of the subsarcolemmal tubular system of mammalian skeletal muscle fibers.
A subsarcolemmal tubular system network (SSTN) has been detected in skeletal muscle fibers by confocal imaging after the removal of the sarcolemma. Here we confirm the existence and resolve the fine architecture and the localization of the SSTN at an unprecedented level of detail by examining extracellularly applied tubular system markers in skeletal muscle fiber preparations with a combination...
متن کاملEvidence for Anion-Permselective Membrane in Crayfish Muscle Fibers and Its Possible Role in Excitation-Contraction Coupling
Under certain conditions only, isolated crayfish skeletal muscle fibers change in appearance, becoming grainy, darkening, and seemingly losing their striations. These changes result from development of large vesicles on both sides of the Z-line. The longitudinal sarcoplasmic reticulum remains unaffected. The vesicles are due to swelling of a transverse tubular system (TTS) which is presumably h...
متن کاملT . L . Dutka and G . D . Lamb glycolysis skeletal muscle fibers preferentially use ATP from Na + - K + pumps in the transverse tubular system of
[PDF] [Full Text] [Abstract] , January 1, 2008; 88 (1): 287-332. Physiol Rev D. G. Allen, G. D. Lamb and H. Westerblad Skeletal Muscle Fatigue: Cellular Mechanisms [PDF] [Full Text] [Abstract] , February 1, 2008; 586 (3): 875-887. J. Physiol. T. L. Dutka, R. M. Murphy, D. G. Stephenson and G. D. Lamb importance in excitation-contraction coupling and fatigue Chloride conductance in the trans...
متن کامل