Construction of Optimal Derivative-Free Techniques without Memory

نویسندگان

  • Fazlollah Soleymani
  • D. K. R. Babajee
  • Stanford Shateyi
  • Sandile Sydney Motsa
چکیده

Construction of iterative processes without memory, which are both optimal according to the Kung-Traub hypothesis and derivative-free, is considered in this paper. For this reason, techniques with four and five function evaluations per iteration, which reach to the optimal orders eight and sixteen, respectively, are discussed theoretically. These schemes can be viewed as the generalizations of the recent optimal derivative-free family of Zheng et al. in 2011 . This procedure also provides an n-step family using n 1 function evaluations per full cycle to possess the optimal order 2. The analytical proofs of the main contributions are given and numerical examples are included to confirm the outstanding convergence speed of the presented iterative methods using only few function evaluations. The second aim of this work will be furnished when a hybrid algorithm for capturing all the zeros in an interval has been proposed. The novel algorithm could deal with nonlinear functions having finitely many zeros in an interval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two new three and four parametric with memory methods for solving nonlinear ‎equations

In this study, based on the optimal free derivative without memory methods proposed by Cordero et al. [A. Cordero, J.L. Hueso, E. Martinez, J.R. Torregrosa, Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation, Mathematical and Computer Modeling. 57 (2013) 1950-1956], we develop two new iterative with memory methods for solving a nonline...

متن کامل

A NEW TWO STEP CLASS OF METHODS WITH MEMORY FOR SOLVING NONLINEAR EQUATIONS WITH HIGH EFFICIENCY INDEX

It is attempted to extend a two-step without memory method to it's with memory. Then, a new two-step derivative free class of without memory methods, requiring three function evaluations per step, is suggested by using a convenient weight function for solving nonlinear equations. Eventually, we obtain a new class of methods by employing a self-accelerating parameter calculated in each iterative...

متن کامل

A variant of Steffensen-King's type family with accelerated sixth-order convergence and high efficiency index: Dynamic study and approach

Keywords: Multipoint iterative methods Steffensen's method King's family Derivative-free Efficiency index a b s t r a c t First, it is attempted to derive an optimal derivative-free Steffensen–King's type family without memory for computing a simple zero of a nonlinear function with efficiency index 4 1=3 % 1:587. Next, since our without memory family includes a parameter in which it is still p...

متن کامل

New Eighth-Order Derivative-Free Methods for Solving Nonlinear Equations

A new family of eighth-order derivative-freemethods for solving nonlinear equations is presented. It is proved that these methods have the convergence order of eight. These new methods are derivative-free and only use four evaluations of the function per iteration. In fact, we have obtained the optimal order of convergence which supports the Kung and Traub conjecture. Kung and Traub conjectured...

متن کامل

Efficient Sixth-Order Nonlinear Equation Solvers Free from Derivative

The construction of some without memory efficient sixth-order iterative schemes for solving univariate nonlinear equations is presented. Per iteration, the novel methods comprise four evaluations of the function, while they are free from derivative calculations. The application of such iterative methods is appeared, when the cost of derivative evaluation is expensive. We analytically show the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012